Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI119610

Nitric oxide decreases stability of mRNAs encoding soluble guanylate cyclase subunits in rat pulmonary artery smooth muscle cells.

G Filippov, D B Bloch, and K D Bloch

Cardiovascular Research Center and the Arthritis Unit of the General Medical Services, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA.

Find articles by Filippov, G. in: PubMed | Google Scholar

Cardiovascular Research Center and the Arthritis Unit of the General Medical Services, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA.

Find articles by Bloch, D. in: PubMed | Google Scholar

Cardiovascular Research Center and the Arthritis Unit of the General Medical Services, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA.

Find articles by Bloch, K. in: PubMed | Google Scholar

Published August 15, 1997 - More info

Published in Volume 100, Issue 4 on August 15, 1997
J Clin Invest. 1997;100(4):942–948. https://doi.org/10.1172/JCI119610.
© 1997 The American Society for Clinical Investigation
Published August 15, 1997 - Version history
View PDF
Abstract

Nitric oxide stimulates soluble guanylate cyclase (sGC) to convert GTP to the intracellular second messenger cGMP. In rat pulmonary artery smooth muscle cells, sGC is an obligate heterodimer composed of alpha1 and beta1 subunits. We investigated the effect of NO donor compounds on sGC subunit gene expression in rat pulmonary artery smooth muscle cells. Sodium nitroprusside and S-nitroso-glutathione decreased sGC subunit mRNA and protein levels, as well as sGC enzyme activity. 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, an sGC inhibitor, blocked the effect of sodium nitroprusside on sGC subunit gene expression, whereas 8-bromo cGMP decreased subunit mRNA levels, demonstrating that NO-mediated decrease in sGC subunit mRNA levels is cGMP-dependent. sGC subunit mRNA levels decreased more rapidly in rat pulmonary artery smooth muscle cells exposed to NO than in cells exposed to actinomycin D, suggesting that NO decreases sGC subunit mRNA stability. Actinomycin D and cycloheximide blocked the ability of NO to decrease sGC subunit mRNA levels. These results demonstrate that NO decreases sGC subunit mRNA stability via a transcription- and translation-dependent mechanism.

Version history
  • Version 1 (August 15, 1997): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts