Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI119502

Kallistatin is a potent new vasodilator.

J Chao, J N Stallone, Y M Liang, L M Chen, D Z Wang, and L Chao

Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, USA.

Find articles by Chao, J. in: PubMed | Google Scholar

Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, USA.

Find articles by Stallone, J. in: PubMed | Google Scholar

Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, USA.

Find articles by Liang, Y. in: PubMed | Google Scholar

Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, USA.

Find articles by Chen, L. in: PubMed | Google Scholar

Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, USA.

Find articles by Wang, D. in: PubMed | Google Scholar

Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, USA.

Find articles by Chao, L. in: PubMed | Google Scholar

Published July 1, 1997 - More info

Published in Volume 100, Issue 1 on July 1, 1997
J Clin Invest. 1997;100(1):11–17. https://doi.org/10.1172/JCI119502.
© 1997 The American Society for Clinical Investigation
Published July 1, 1997 - Version history
View PDF
Abstract

Kallistatin is a serine proteinase inhibitor which binds to tissue kallikrein and inhibits its activity. The aim of this study is to evaluate if kallistatin has a direct effect on the vasculature and on blood pressure homeostasis. We found that an intravenous bolus injection of human kallistatin caused a rapid, potent, and transient reduction of mean arterial blood pressure in anesthetized rats. Infusion of purified kallistatin (0.07-1.42 nmol/kg) into cannulated rat jugular vein produced a 20-85 mmHg reduction of blood pressure in a dose-dependent manner. Hoe 140, a bradykinin B2-receptor antagonist, had no effect on the hypotensive effect of kallistatin yet it abolished the blood pressure-lowering effect of kinin and kallikrein. Relaxation of isolated aortic rings by kallistatin was observed in the presence (ED50 of 3.4 x 10(-9) M) and in the absence of endothelium (ED50 of 10(-9) M). Rat kallikrein-binding protein, but not kinin or kallikrein, induced vascular relaxation of aortic rings. Neither Hoe 140 nor Nomega-nitro--arginine methyl ester, a nitric oxide synthase inhibitor, affected vasorelaxation induced by kallistatin. Kallistatin also caused dose-dependent vasodilation of the renal vasculature in the isolated, perfused rat kidney. Specific kallistatin-binding sites were identified in rat aorta by Scatchard plot analysis with a Kd of 0.25+/-0.07 nM and maximal binding capacity of 47.9+/-10.4 fmol/mg protein (mean+/-SEM, n = 3). These results indicate that kallistatin is a potent vasodilator which may function directly through a vascular smooth muscle mechanism independent of an endothelial bradykinin receptor. This study introduces the potential significance of kallistatin in directly regulating blood pressure to reduce hypertension.

Version history
  • Version 1 (July 1, 1997): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts