Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI119495

Deoxyribonucleic acid triplex formation inhibits granulocyte macrophage colony-stimulating factor gene expression and suppresses growth in juvenile myelomonocytic leukemic cells.

M Kochetkova, P O Iversen, A F Lopez, and M F Shannon

Division of Human Immunology, Hanson Centre for Cancer Research, Institute of Medical and Veterinary Science, Adelaide, 5000 South Australia, Australia.

Find articles by Kochetkova, M. in: PubMed | Google Scholar

Division of Human Immunology, Hanson Centre for Cancer Research, Institute of Medical and Veterinary Science, Adelaide, 5000 South Australia, Australia.

Find articles by Iversen, P. in: PubMed | Google Scholar

Division of Human Immunology, Hanson Centre for Cancer Research, Institute of Medical and Veterinary Science, Adelaide, 5000 South Australia, Australia.

Find articles by Lopez, A. in: PubMed | Google Scholar

Division of Human Immunology, Hanson Centre for Cancer Research, Institute of Medical and Veterinary Science, Adelaide, 5000 South Australia, Australia.

Find articles by Shannon, M. in: PubMed | Google Scholar

Published June 15, 1997 - More info

Published in Volume 99, Issue 12 on June 15, 1997
J Clin Invest. 1997;99(12):3000–3008. https://doi.org/10.1172/JCI119495.
© 1997 The American Society for Clinical Investigation
Published June 15, 1997 - Version history
View PDF
Abstract

Juvenile myelomonocytic leukemia (JMML) is a severe childhood malignancy. The autocrine production of GMCSF is believed to be responsible for the spontaneous proliferation of JMML cells. A nuclear factor-kappaB (NF-kappaB)/Rel binding site within the GM-CSF gene promoter, termed the kappaB element, plays an important role in controlling transcription from the GM-CSF gene. We investigated the effect of an oligonucleotide GM3, directed to form a DNA triple helix across this kappaB element, on growth and GM-CSF production by JMML cells. Treatment of these cells, either unstimulated or induced by TNFalpha, with GM3 led to a significant and specific inhibition of both GM-CSF production and spontaneous colony formation. This constitutes the first report linking specific triplex-mediated inhibition of gene transcription with a functional outcome; i.e., cell growth. We observed the constitutive presence of NF-kappaB/Rel proteins in the nucleus of JMML cells. The constitutive and TNFalpha-induced NF-kappaB/Rel complexes were identical and were composed mainly of p50 and c-Rel proteins. Treatment of the cells with a neutralizing anti-TNFalpha monoclonal antibody completely abrogated constitutive nuclear expression of NF-kappaB/Rel proteins. These results indicate that the aberrant, constitutive GM-CSF gene activation in JMML is maintained by TNFalpha-mediated activation of NF-kappaB/Rel proteins. Our findings identify the molecular basis for the autocrine TNFalpha activation of the GM-CSF gene in JMML and suggest potential novel and specific approaches for the treatment of this aggressive childhood leukemia.

Version history
  • Version 1 (June 15, 1997): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts