Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI119492

In situ polymerase chain reaction-based localization studies support role of human herpesvirus-8 as the cause of two AIDS-related neoplasms: Kaposi's sarcoma and body cavity lymphoma.

K E Foreman, P E Bacon, E D Hsi, and B J Nickoloff

Skin Disease Research Laboratories, Loyola University Medical Center, Maywood, Illinois 60153-5385, USA.

Find articles by Foreman, K. in: PubMed | Google Scholar

Skin Disease Research Laboratories, Loyola University Medical Center, Maywood, Illinois 60153-5385, USA.

Find articles by Bacon, P. in: PubMed | Google Scholar

Skin Disease Research Laboratories, Loyola University Medical Center, Maywood, Illinois 60153-5385, USA.

Find articles by Hsi, E. in: PubMed | Google Scholar

Skin Disease Research Laboratories, Loyola University Medical Center, Maywood, Illinois 60153-5385, USA.

Find articles by Nickoloff, B. in: PubMed | Google Scholar

Published June 15, 1997 - More info

Published in Volume 99, Issue 12 on June 15, 1997
J Clin Invest. 1997;99(12):2971–2978. https://doi.org/10.1172/JCI119492.
© 1997 The American Society for Clinical Investigation
Published June 15, 1997 - Version history
View PDF
Abstract

Several lines of investigation point to a new herpesvirus, human herpesvirus-8 (HHV-8), as the cause of two different neoplasms seen in AIDS patients-Kaposi's sarcoma (KS) and body cavity B cell lymphoma. If this virus is the etiological agent, rather than another opportunistic infectious agent, it should be present in the earliest detectable clinical lesions on a temporal basis, and localize to specific target cells in a spatial pattern consistent with tumorigenic pathways. In this study, we take advantage of the clinical accessibility to biopsy early (patch stage) skin lesions of KS to address the temporal issue, combined with in situ PCR and dual immunostaining using a marker identifying malignant cells, to address the spatial localization issue. 21 different tissue samples were subjected to PCR analysis and in situ PCR with and without simultaneous immunostaining. In normal skin from healthy individuals, no HHV-8 DNA was detected by PCR or in situ PCR. However, in all PCR-positive tissues, distinct and specific in situ PCR staining was observed. In four different patch stage KS lesions, in situ PCR staining localized to nuclei of endothelial cells and perivascular spindle-shaped tumor cells. Later stage KS lesions (plaques and nodules) revealed additional positive cells, including epidermal keratinocytes (four of five), and eccrine epithelia (two of four). These patterns were nonrestricted to skin, as pulmonary KS also revealed HHV-8-specific infection of endothelial cells and KS tumor cells, as well as epithelioid pneumocytes (two of two). In body cavity B cell lymphoma by dual staining, HHV-8 was present in malignant tumor cells (EMA immunostained positive) and not in reactive lymphocytes. These results reveal an early temporal onset and nonrandom tissue and cellular distribution pattern for HHV-8 infection that is consistent with a causal link between this DNA virus and two AIDS-related neoplasms.

Version history
  • Version 1 (June 15, 1997): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts