Matrix metalloproteinases of the stromelysin family are expressed in the human endometrium as a consequence of cellular events during the menstrual cycle that require extracellular matrix remodeling. We have recently documented the presence of these enzymes in lesions of endometriosis, a benign disease that presents as persistent ectopic sites of endometrial tissue, usually within the peritoneal cavity. Endometriosis can develop after retrograde menstruation of endometrial tissue fragments, and establishment of ectopic sites within the peritoneal cavity requires breakdown of extracellular matrix. To examine whether matrix metalloproteinases might contribute to the steroid-dependent epidemiology and cellular pathophysiology of endometriosis, we have developed an experimental model of endometriosis using athymic nude mice as recipients of human endometrial tissue. Our results demonstrate that estrogen treatment of human endometrial tissue in organ culture maintains secretion of matrix metalloproteinases, and promotes establishment of ectopic peritoneal lesions when injected into recipient animals. In contrast, suppressing metalloproteinase secretion in vitro with progesterone treatment, or blocking enzyme activity with a natural inhibitor of metalloproteinases, inhibits the formation of ectopic lesions in this experimental model.
K L Bruner, L M Matrisian, W H Rodgers, F Gorstein, K G Osteen
Usage data is cumulative from December 2022 through December 2023.
Usage | JCI | PMC |
---|---|---|
Text version | 177 | 43 |
17 | 28 | |
Citation downloads | 15 | 0 |
Totals | 209 | 71 |
Total Views | 280 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.