Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

IFN-gamma potentiates atherosclerosis in ApoE knock-out mice.
S Gupta, … , A R Tall, C Schindler
S Gupta, … , A R Tall, C Schindler
Published June 1, 1997
Citation Information: J Clin Invest. 1997;99(11):2752-2761. https://doi.org/10.1172/JCI119465.
View: Text | PDF
Research Article

IFN-gamma potentiates atherosclerosis in ApoE knock-out mice.

  • Text
  • PDF
Abstract

The early colocalization of T cells and the potent immunostimulatory cytokine IFN-gamma to atherosclerotic lesions suggest that the immune system contributes to atherogenesis. Since mice with a targeted disruption of the apoE gene (apoE 0 mice) develop profound atherosclerosis, we examined the role of IFN-gamma in this process. First, the presence of CD4(+) and CD8(+) cells, which secrete lesional IFN-gamma, was documented in apoE 0 atheromata. Then, the apoE 0 mice were crossed with IFN-gamma receptor (IFNgammaR) 0 mice to generate apoE 0/IFNgammaR 0 mice. Compared to the apoE 0 mice, the compound knock-out mice exhibited a substantial reduction in atherosclerotic lesion size, a 60% reduction in lesion lipid accumulation, a decrease in lesion cellularity, but a marked increase in lesion collagen content. Evaluation of the plasma lipoproteins showed that the compound knockout mice had a marked increase in potentially atheroprotective phospholipid/apoA-IV rich particles as well. This correlated with an induction of hepatic apoA-IV transcripts. These observations suggest that IFN-gamma promotes and modifies atherosclerosis through both local effects in the arterial wall as well as a systemic effect on plasma lipoproteins. Therefore, therapeutic inhibition of IFN-gamma signaling may lead to the formation of more lipid-poor and stable atheromata.

Authors

S Gupta, A M Pablo, X c Jiang, N Wang, A R Tall, C Schindler

×

Usage data is cumulative from June 2024 through June 2025.

Usage JCI PMC
Text version 1,038 77
PDF 102 69
Citation downloads 54 0
Totals 1,194 146
Total Views 1,340
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts