The mechanism of apolipoprotein (apo) CIII-induced hypertriglyceridemia remains uncertain. We crossed apoCIII transgenic and apoE gene knockout (apoE0) mice, and observed severe hypertriglyceridemia with plasma triglyceride levels of 4,521+/-6, 394 mg/dl vs. 423+/-106 mg/dl in apoE0 mice, P < 0.00001 for log(triglycerides [TG]). Cholesterols were 1,181+/-487 mg/dl vs. 658+/-151 mg/dl, P < 0.0001. Lipoprotein fractionation showed a marked increase in triglyceride-enriched chylomicrons+VLDL. This increase was limited to the lowest density (chylomicrons and Sf 100-400) subfractions. Intermediate density lipoproteins (IDL)+LDL increased moderately, and HDL decreased. There was no significant increase in triglyceride production in apoCIII transgenic/apoE0 mice. The clearance of VLDL triglycerides, however, was significantly decreased. Lipoprotein lipase in postheparin plasma was elevated, but activation studies suggested LPL inhibition by both apoCIII transgenic and apoCIII transgenic/apoE0 plasma. ApoCIII overexpression also produced a marked decrease in VLDL glycosaminoglycan binding which was independent of apoE. The predominant mechanism of apoCIII-induced hypertriglyceridemia appears to be decreased lipolysis at the cell surface. The altered lipoprotein profile that was produced also allowed us to address the question of the direct atherogenicity of chylomicrons and large VLDL. Quantitative arteriosclerosis studies showed identical results in both apoCIII transgenic/apoE0 and apoE0 mice, supporting the view that very large triglyceride-enriched particles are not directly atherogenic.
T Ebara, R Ramakrishnan, G Steiner, N S Shachter
Usage data is cumulative from August 2024 through August 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 296 | 15 |
62 | 16 | |
Citation downloads | 80 | 0 |
Totals | 438 | 31 |
Total Views | 469 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.