Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Citations to this article

Nitric oxide synthase lies downstream from vascular endothelial growth factor-induced but not basic fibroblast growth factor-induced angiogenesis.
M Ziche, … , H J Granger, R Bicknell
M Ziche, … , H J Granger, R Bicknell
Published June 1, 1997
Citation Information: J Clin Invest. 1997;99(11):2625-2634. https://doi.org/10.1172/JCI119451.
View: Text | PDF
Research Article

Nitric oxide synthase lies downstream from vascular endothelial growth factor-induced but not basic fibroblast growth factor-induced angiogenesis.

  • Text
  • PDF
Abstract

Systemic administration of the nitric oxide (NO) synthase inhibitor Nomega-nitro--arginine methyl ester (L-NAME) to rabbits bearing a corneal implant blocked vascular endothelial growth factor (VEGF), but not basic fibroblast growth factor (bFGF)-induced angiogenesis. L-NAME completely blocked angiogenesis induced by VEGF-transfected MCF-7 breast carcinoma cells and the cells remained dormant in the cornea. Postcapillary endothelial cell migration and growth induced by VEGF were blocked by both the NO synthase inhibitor Nomega-mono-methyl--arginine and by the guanylate cyclase inhibitor LY 83583. We conclude that NO is a downstream imperative of VEGF-, but not bFGF-induced angiogenesis, and propose that the NO synthase/guanylate cyclase pathway is a potential target for controlling tumor angiogenesis in response to VEGF. Our studies support recent evidence that VEGF and bFGF induce angiogenesis by different mechanistic pathways using the alphavbeta5 and alphavbeta3 integrins, respectively.

Authors

M Ziche, L Morbidelli, R Choudhuri, H T Zhang, S Donnini, H J Granger, R Bicknell

×

Loading citation information...
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts