Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Citations to this article

Stress response decreases NF-kappaB nuclear translocation and increases I-kappaBalpha expression in A549 cells.
H R Wong, … , M Ryan, J R Wispé
H R Wong, … , M Ryan, J R Wispé
Published May 15, 1997
Citation Information: J Clin Invest. 1997;99(10):2423-2428. https://doi.org/10.1172/JCI119425.
View: Text | PDF
Research Article

Stress response decreases NF-kappaB nuclear translocation and increases I-kappaBalpha expression in A549 cells.

  • Text
  • PDF
Abstract

The stress response and stress proteins confer protection against diverse forms of cellular and tissue injury, including acute lung injury. The stress response can inhibit nonstress protein gene expression, therefore transcriptional inhibition of proinflammatory responses could be a mechanism of protection against acute lung injury. To explore this possibility, we determined the effects of the stress response on nuclear translocation of the transcription factor NF-kappaB, an important regulator of proinflammatory gene expression. In A549 cells induction of the stress response decreased tumor necrosis factor-alpha (TNF-alpha)-mediated NF-kappaB nuclear translocation. TNF-alpha initiates NF-kappaB nuclear translocation by causing dissociation of the inhibitory protein I-kappaBalpha from NF-kappaB and rapid degradation of I-kappaBalpha. Prior induction of the stress response inhibited TNF-alpha-mediated dissociation of I-kappaBalpha from NF-kappaB and subsequent degradation of I-kappaBalpha. Induction of the stress response also increased expression of I-kappaBalpha. We conclude that the stress response affects NFkappaB-mediated gene regulation by two independent mechanisms. The stress response stabilizes I-kappaBalpha and induces expression of I-kappaBalpha. The composite result of these two effects is to decrease NF-kappaB nuclear translocation. We speculate that the protective effect of the stress response against acute lung injury involves a similar effect on the I-kappaB/NF-kappaB pathway.

Authors

H R Wong, M Ryan, J R Wispé

×

Loading citation information...
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts