Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Vascular endothelial growth factor is an essential molecule for mouse kidney development: glomerulogenesis and nephrogenesis.
Y Kitamoto, … , H Tokunaga, K Tomita
Y Kitamoto, … , H Tokunaga, K Tomita
Published May 15, 1997
Citation Information: J Clin Invest. 1997;99(10):2351-2357. https://doi.org/10.1172/JCI119416.
View: Text | PDF
Research Article

Vascular endothelial growth factor is an essential molecule for mouse kidney development: glomerulogenesis and nephrogenesis.

  • Text
  • PDF
Abstract

Homeostasis of body fluid is maintained by the kidneys, which contain two million glomeruli for blood filtration. A glomerulus is formed by growth of Bowman's capsule harmonized with a capillary during kidney development. The vascular endothelial growth factor (VEGF) is an essential angiogenic cytokine, and VEGF deficiency is known to be fatal in mice in early embryonic stages. As secretions of VEGF from cultured kidneys vary according to developmental stages, the role of VEGF in kidney development was studied in vivo by blocking the endogenous VEGF activity with antibody in newborn mice, in which most organs are already developed but kidneys are still developing. The antibody-treated animals showed normal growth but systemic edema. Vessel formation in the superficial renal cortex was disturbed, nephrogenic areas were diminished, and the number of developing nephrons decreased significantly. Many abnormal glomeruli, lacking capillary tufts, were observed in the antibody-treated mice, and VEGF expression in their Bowman's capsule showed a compensatory increase. These results suggest that VEGF mediates communication between the Bowman's capsule and capillary endothelial cells for developing a glomerulus as well as promoting nephrogenesis. In conclusion, VEGF is likely to be an essential molecule for kidney development, and especially for glomerulogenesis.

Authors

Y Kitamoto, H Tokunaga, K Tomita

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 438 44
PDF 66 25
Citation downloads 76 0
Totals 580 69
Total Views 649
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts