Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI119363

Intestinal transcription and synthesis of apolipoprotein AI is regulated by five natural polymorphisms upstream of the apolipoprotein CIII gene.

S Naganawa, H N Ginsberg, R M Glickman, and G S Ginsburg

Department of Medicine, Beth Israel Hospital, Boston, Massachusetts 02215, USA.

Find articles by Naganawa, S. in: JCI | PubMed | Google Scholar

Department of Medicine, Beth Israel Hospital, Boston, Massachusetts 02215, USA.

Find articles by Ginsberg, H. in: JCI | PubMed | Google Scholar

Department of Medicine, Beth Israel Hospital, Boston, Massachusetts 02215, USA.

Find articles by Glickman, R. in: JCI | PubMed | Google Scholar

Department of Medicine, Beth Israel Hospital, Boston, Massachusetts 02215, USA.

Find articles by Ginsburg, G. in: JCI | PubMed | Google Scholar

Published April 15, 1997 - More info

Published in Volume 99, Issue 8 on April 15, 1997
J Clin Invest. 1997;99(8):1958–1965. https://doi.org/10.1172/JCI119363.
© 1997 The American Society for Clinical Investigation
Published April 15, 1997 - Version history
View PDF
Abstract

To understand the factors contributing to the synthesis of human apolipoprotein AI (apoAI), relative apoAI synthesis was measured from endoscopic biopsy samples obtained from 18 healthy volunteers. The relative amount of apoAI synthesis was directly correlated with steady state intestinal apoAI mRNA levels and a 10-fold within-group variability was observed. Analysis of genomic DNA from the subjects revealed five polymorphic sites which defined two haplotypes in the intestinal enhancer region of the apoAI gene located upstream of the apolipoprotein CIII gene transcriptional start site (+ 1): (-641 C to A, -630 G to A, -625 T to deletion, -482 C to T, and -455 T to C). The population frequencies of the wild-type and mutant alleles were 0.53 and 0.44, respectively. Mean steady state apoAI mRNA levels and mean relative apoAI synthesis were 49 and 37% lower, respectively, in homozygotes for the mutant allele and 28 and 41% lower, respectively, in heterozygotes than in homozygotes for the wild-type allele (P < 0.05 for both). Site-directed mutants of apoAI gene promoter/reporter constructs containing the above mutations were transfected into Caco-2 cells and showed a 46% decrease in transcriptional activity compared with the wild type (P < 0.001); however, no significant differences were observed in HepG2 cells. Electrophoretic mobility shift assays showed that the mutated sequences from -655 to -610 bound Caco-2 cell nuclear protein(s) while the wild type did not. These results indicate that intestinal apoAI gene transcription and protein synthesis are genetically determined and are reduced in the presence of common mutations which induced binding of nuclear protein(s), possibly a transcriptional repressor.

Version history
  • Version 1 (April 15, 1997): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts