Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Loss of p27Kip1 enhances the transplantation efficiency of hepatocytes transferred into diseased livers
Anthony N. Karnezis, … , Markus Grompe, Liang Zhu
Anthony N. Karnezis, … , Markus Grompe, Liang Zhu
Published August 1, 2001
Citation Information: J Clin Invest. 2001;108(3):383-390. https://doi.org/10.1172/JCI11933.
View: Text | PDF
Article

Loss of p27Kip1 enhances the transplantation efficiency of hepatocytes transferred into diseased livers

  • Text
  • PDF
Abstract

p27Kip1 is an important regulator of cyclin-dependent kinases. Studies with p27 knockout mice have revealed abnormalities in proliferation and differentiation of multiple cell types. Here we show that primary hepatocytes isolated from livers of adult p27 knockout mice exhibit higher levels of DNA synthesis activity in culture than do wild-type cells. Interestingly, we found that, compared with control hepatocytes, p27 knockout hepatocytes proliferate better after transplantation into diseased livers to reverse liver failure. These results reveal an aspect of p27 that could be used to benefit cell-based therapy.

Authors

Anthony N. Karnezis, Marina Dorokhov, Markus Grompe, Liang Zhu

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 377 16
PDF 54 14
Figure 210 0
Citation downloads 64 0
Totals 705 30
Total Views 735
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts