Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Hemorrhage increases cytokine expression in lung mononuclear cells in mice: involvement of catecholamines in nuclear factor-kappaB regulation and cytokine expression.
Y Le Tulzo, … , C A Dinarello, E Abraham
Y Le Tulzo, … , C A Dinarello, E Abraham
Published April 1, 1997
Citation Information: J Clin Invest. 1997;99(7):1516-1524. https://doi.org/10.1172/JCI119314.
View: Text | PDF
Research Article

Hemorrhage increases cytokine expression in lung mononuclear cells in mice: involvement of catecholamines in nuclear factor-kappaB regulation and cytokine expression.

  • Text
  • PDF
Abstract

The expression of proinflammatory and immunoregulatory cytokines rapidly increases in the lungs after hemorrhage, and such alterations contribute to the frequent development of acute inflammatory lung injury in this setting. Blood loss also produces elevations in catecholamine concentrations in the pulmonary and systemic circulation. In the present experiments, we used alpha- and beta-adrenergic receptor blockade to examine in vivo interactions between hemorrhage-induced adrenergic stimulation and pulmonary cytokine expression. Treatment of mice with the alpha-adrenergic receptor antagonist phentolamine prevented not only the elevation in mRNA levels of IL-1beta, TNF-alpha, and TGF-beta1, the increase in IL-1beta protein, but also the activation of nuclear factor (NF)-KB and cyclic AMP response element binding protein, which occurred in lung cells of untreated animals during the first hour after hemorrhage. In contrast, treatment before hemorrhage with the beta-adrenergic receptor antagonist propranolol was associated with increases in mRNA levels for IL-1beta, TNF-alpha, and TGF-beta1, which were greater than those present in untreated hemorrhaged mice, and did not prevent hemorrhage-associated increases in lung IL-1beta protein. Treatment with propranolol prevented hemorrhage-induced phosphorylation of cyclic AMP response element binding protein, but increased hemorrhage-associated activation of NF-KB. These results demonstrate that hemorrhage initially increases pulmonary cytokine expression through alpha- but not beta-adrenergic stimulation, and suggest that such alpha-adrenergic-mediated effects occur through activation of the transcriptional regulatory factor NF-kappaB.

Authors

Y Le Tulzo, R Shenkar, D Kaneko, P Moine, G Fantuzzi, C A Dinarello, E Abraham

×

Usage data is cumulative from July 2024 through July 2025.

Usage JCI PMC
Text version 209 14
PDF 73 19
Citation downloads 57 0
Totals 339 33
Total Views 372
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts