Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
p47phox is required for atherosclerotic lesion progression in ApoE–/– mice
Patricia A. Barry-Lane, … , Edward T.H. Yeh, Marschall S. Runge
Patricia A. Barry-Lane, … , Edward T.H. Yeh, Marschall S. Runge
Published November 15, 2001
Citation Information: J Clin Invest. 2001;108(10):1513-1522. https://doi.org/10.1172/JCI11927.
View: Text | PDF
Article

p47phox is required for atherosclerotic lesion progression in ApoE–/– mice

  • Text
  • PDF
Abstract

NADPH oxidase is upregulated in smooth muscle cells (SMCs) in response to growth factor stimulation, concomitant with increased reactive oxygen species (ROS) production. We investigated the role of ROS production by NADPH oxidase in SMC responses to growth factors and in atherosclerotic lesion formation in ApoE–/– mice. SMCs from wild-type, p47phox–/–, and gp91phox–/– mice differed markedly with respect to growth factor responsiveness and ROS generation. p47phox–/– SMCs had diminished superoxide production and a decreased proliferative response to growth factors compared with wild-type cells, whereas the response of gp91phox–/– SMCs was indistinguishable from that of wild-type SMCs. The relevance of these in vitro observations was tested by measuring atherosclerotic lesion formation in genetically modified (wild-type, p47phox–/–, ApoE–/–, and ApoE–/–/p47phox–/–) mice. ApoE–/–/p47phox–/– mice had less total lesion area than ApoE–/– mice, regardless of whether mice were fed standard chow or a high-fat diet. Together, these studies provide convincing support for the hypothesis that superoxide generation in general, and NADPH oxidase in particular, have a requisite role in atherosclerotic lesion formation, and they provide a rationale for further studies to dissect the contributions of ROS to vascular lesion formation.

Authors

Patricia A. Barry-Lane, Cam Patterson, Marié van der Merwe, Zhaoyong Hu, Stephen M. Holland, Edward T.H. Yeh, Marschall S. Runge

×

Figure 8

Options: View larger image (or click on image) Download as PowerPoint
Comparison of ability of wild-type and p47phox–/– macrophages (MO) to ho...
Comparison of ability of wild-type and p47phox–/– macrophages (MO) to home to atherosclerotic lesions in plaques, at the luminal surface, or in total, in ApoE–/– mice. No differences were observed in homing of macrophages of either genotype to lesions in ApoE–/– mice.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts