Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI119265

Increased cellular expression of matrix proteins that regulate mineralization is associated with calcification of native human and porcine xenograft bioprosthetic heart valves.

S S Srivatsa, P J Harrity, P B Maercklein, L Kleppe, J Veinot, W D Edwards, C M Johnson, and L A Fitzpatrick

Department of Internal Medicine, Mayo Clinic and Mayo Foundation, Rochester, Minnesota 55905, USA.

Find articles by Srivatsa, S. in: JCI | PubMed | Google Scholar

Department of Internal Medicine, Mayo Clinic and Mayo Foundation, Rochester, Minnesota 55905, USA.

Find articles by Harrity, P. in: JCI | PubMed | Google Scholar

Department of Internal Medicine, Mayo Clinic and Mayo Foundation, Rochester, Minnesota 55905, USA.

Find articles by Maercklein, P. in: JCI | PubMed | Google Scholar

Department of Internal Medicine, Mayo Clinic and Mayo Foundation, Rochester, Minnesota 55905, USA.

Find articles by Kleppe, L. in: JCI | PubMed | Google Scholar

Department of Internal Medicine, Mayo Clinic and Mayo Foundation, Rochester, Minnesota 55905, USA.

Find articles by Veinot, J. in: JCI | PubMed | Google Scholar

Department of Internal Medicine, Mayo Clinic and Mayo Foundation, Rochester, Minnesota 55905, USA.

Find articles by Edwards, W. in: JCI | PubMed | Google Scholar

Department of Internal Medicine, Mayo Clinic and Mayo Foundation, Rochester, Minnesota 55905, USA.

Find articles by Johnson, C. in: JCI | PubMed | Google Scholar

Department of Internal Medicine, Mayo Clinic and Mayo Foundation, Rochester, Minnesota 55905, USA.

Find articles by Fitzpatrick, L. in: JCI | PubMed | Google Scholar

Published March 1, 1997 - More info

Published in Volume 99, Issue 5 on March 1, 1997
J Clin Invest. 1997;99(5):996–1009. https://doi.org/10.1172/JCI119265.
© 1997 The American Society for Clinical Investigation
Published March 1, 1997 - Version history
View PDF
Abstract

Dystrophic mineralization remains the leading cause of stenotic or regurgitant failure in native human and porcine bioprosthetic heart valves. We hypothesized that cellular expression of noncollagenous matrix proteins (osteopontin, osteocalcin, and osteonectin) that regulate skeletal mineralization may orchestrate valvular calcification. Porcine bioprosthetic heart valves and native human heart valves obtained during replacement surgery were analyzed for cells, matrix proteins that regulate mineralization, and vessels. Cell accumulation and calcification were correlated for both valve types (rho = 0.75, P = 0.01, native; rho = 0.42, P = 0.08, bioprosthetic). Osteopontin expression correlated with cell accumulation (rho = 0.58, P = 0.04) and calcification (rho = 0.52, P = 0.06) for bioprosthetic valves. Osteocalcin expression correlated with calcification (rho = 0.77, P = 0.04) and cell accumulation (rho = 0.69, P = 0.07) in native valves. Comparisons of calcified versus noncalcified native and bioprosthetic valves for averaged total matrix protein mRNA signal score revealed increased noncollagenous proteins mRNA levels in calcified valves (P = 0.07, group I vs. group II; P = 0.02, group III vs. group IV). When stratified according to positive versus negative mRNA signal status, both calcified bioprosthetic valves (P = 0.03) and calcified native valves (P = 0.01) were significantly more positive for noncollagenous proteins mRNA than their noncalcified counterparts. Local cell-associated expression of proteins regulating mineralization suggests a highly coordinated mechanism of bioprosthetic and native valve calcification analogous to physiologic bone mineralization. Modulation of cellular infiltration or cellular expression of matrix proteins that regulate mineralization, may offer an effective therapeutic approach to the prevention of valve failure secondary to calcification.

Version history
  • Version 1 (March 1, 1997): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts