Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI119253

In vivo action of 15-lipoxygenase in early stages of human atherogenesis.

H Kühn, D Heydeck, I Hugou, and C Gniwotta

Institute of Biochemistry, University Clinics Charité, Humboldt University, Berlin, Germany. hartmut.kuehn@hpcom.rz.hu-berlin.de

Find articles by Kühn, H. in: JCI | PubMed | Google Scholar

Institute of Biochemistry, University Clinics Charité, Humboldt University, Berlin, Germany. hartmut.kuehn@hpcom.rz.hu-berlin.de

Find articles by Heydeck, D. in: JCI | PubMed | Google Scholar

Institute of Biochemistry, University Clinics Charité, Humboldt University, Berlin, Germany. hartmut.kuehn@hpcom.rz.hu-berlin.de

Find articles by Hugou, I. in: JCI | PubMed | Google Scholar

Institute of Biochemistry, University Clinics Charité, Humboldt University, Berlin, Germany. hartmut.kuehn@hpcom.rz.hu-berlin.de

Find articles by Gniwotta, C. in: JCI | PubMed | Google Scholar

Published March 1, 1997 - More info

Published in Volume 99, Issue 5 on March 1, 1997
J Clin Invest. 1997;99(5):888–893. https://doi.org/10.1172/JCI119253.
© 1997 The American Society for Clinical Investigation
Published March 1, 1997 - Version history
View PDF
Abstract

Oxidative modification of low density lipoprotein has been suggested as patho-physiologically relevant process in atherogenesis and the lipid peroxidizing enzyme 15-lipoxygenase may be involved. For experimental evidence on the in vivo action of this enzyme in the time course of plaque formation we analyzed the lipid extracts of lesional areas representing various stages of human atherogenesis for the occurrence of specific 15-lipoxygenase products. In advanced human lesions the degree of oxygenation of the lesion lipids measured as hydroxy linoleic acid/linoleic acid ratio varied between 0.2 and 3.2%. Here an unspecific pattern of oxygenated lipids that did not differ from the pattern formed during copper-catalyzed LDL oxidation was detected. In both cases an enantiomer ratio (S/R-ratio) of 13-hydroxy-9Z,11E-octadecadienoic acid (13-HODE) of approximately 1:1 was found. In young human lesions which were obtained from the collection of the pathological determinants of atherosclerosis in youth (PDAY) program the hydroxy linoleic acid/linoleic acid ratio was much smaller (variation between 0.05 and 0.6%), and a significant share of specific 15-lipoxygenase products was detected (S/R-ratio of 13-hydroxy linoleic acid of 54 +/- 3.1/46 +/- 3.1 [mean +/- SD]). These data suggest that the 15-lipoxygenase is enzymatically active on endogenous substrates in young human lesions and thus, may be of patho-physiological importance for early atherogenesis. In advanced human plaques the 15-lipoxygenase may be functionally silent and specific lipoxygenase products formed in earlier stages may be decomposed or superimposed by large amounts of nonenzymatic lipid peroxidation products.

Version history
  • Version 1 (March 1, 1997): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts