Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Upcoming)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI119181

Active stage of autoimmune diabetes is associated with the expression of a novel cytokine, IGIF, which is located near Idd2.

H Rothe, N A Jenkins, N G Copeland, and H Kolb

Diabetes Research Institute at the Heinrich-Heine University Dusseldorf, Germany.

Find articles by Rothe, H. in: JCI | PubMed | Google Scholar

Diabetes Research Institute at the Heinrich-Heine University Dusseldorf, Germany.

Find articles by Jenkins, N. in: JCI | PubMed | Google Scholar

Diabetes Research Institute at the Heinrich-Heine University Dusseldorf, Germany.

Find articles by Copeland, N. in: JCI | PubMed | Google Scholar

Diabetes Research Institute at the Heinrich-Heine University Dusseldorf, Germany.

Find articles by Kolb, H. in: JCI | PubMed | Google Scholar

Published February 1, 1997 - More info

Published in Volume 99, Issue 3 on February 1, 1997
J Clin Invest. 1997;99(3):469–474. https://doi.org/10.1172/JCI119181.
© 1997 The American Society for Clinical Investigation
Published February 1, 1997 - Version history
View PDF
Abstract

Recently, interferon-gamma-inducing-factor (IGIF) has been described as a novel monokine that is a more potent interferon-gamma (IFN-gamma) inducer than IL-12. By cloning IGIF from affected tissue and studying IGIF gene expression, we describe for the first time a close association of this cytokine with an autoimmune disease. The non-obese diabetic (NOD) mouse spontaneously develops autoimmune insulitis and diabetes which can be accelerated and synchronized by a single injection of cyclophosphamide. IGIF mRNA was demonstrated by reverse transcriptase PCR in NOD mouse pancreas during early stages of insulitis. Levels of IGIF mRNA increased rapidly after cyclophosphamide treatment and preceded a rise in IFN-gamma mRNA, and subsequently diabetes. Interestingly, these kinetics mimick that of IL-12p40 mRNA, resulting in a close correlation of individual mRNA levels. Cloning of the IGIF cDNA from pancreas RNA followed by sequencing revealed identity with the IGIF sequence cloned from Kupffer cells and in vivo preactivated macrophages. When extending our study to macrophages of the spleen we observed that NOD mouse macrophages responded to cyclophosphamide with IGIF gene expression while macrophages from Balb/c mice treated in parallel did not. The IGIF gene position is located within the Idd2 interval on mouse chromosome 9 and therefore it is a candidate for the Idd2 susceptible gene. We conclude that IGIF expression is abnormally regulated in autoimmune NOD mice and closely associated with diabetes development.

Version history
  • Version 1 (February 1, 1997): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts