Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Upcoming)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI119177

The vascular effects of L-Arginine in humans. The role of endogenous insulin.

D Giugliano, R Marfella, G Verrazzo, R Acampora, L Coppola, D Cozzolino, and F D'Onofrio

Department of Geriatrics and Metabolic Diseases, Second University of Naples, Italy.

Find articles by Giugliano, D. in: JCI | PubMed | Google Scholar

Department of Geriatrics and Metabolic Diseases, Second University of Naples, Italy.

Find articles by Marfella, R. in: JCI | PubMed | Google Scholar

Department of Geriatrics and Metabolic Diseases, Second University of Naples, Italy.

Find articles by Verrazzo, G. in: JCI | PubMed | Google Scholar

Department of Geriatrics and Metabolic Diseases, Second University of Naples, Italy.

Find articles by Acampora, R. in: JCI | PubMed | Google Scholar

Department of Geriatrics and Metabolic Diseases, Second University of Naples, Italy.

Find articles by Coppola, L. in: JCI | PubMed | Google Scholar

Department of Geriatrics and Metabolic Diseases, Second University of Naples, Italy.

Find articles by Cozzolino, D. in: JCI | PubMed | Google Scholar

Department of Geriatrics and Metabolic Diseases, Second University of Naples, Italy.

Find articles by D'Onofrio, F. in: JCI | PubMed | Google Scholar

Published February 1, 1997 - More info

Published in Volume 99, Issue 3 on February 1, 1997
J Clin Invest. 1997;99(3):433–438. https://doi.org/10.1172/JCI119177.
© 1997 The American Society for Clinical Investigation
Published February 1, 1997 - Version history
View PDF
Abstract

This study aimed at evaluating whether increased availability of the natural precursor of nitric oxide, L-arginine, could influence systemic hemodynamic and rheologic parameters in humans and whether the effects of L-arginine are mediated by endogenous insulin. 10 healthy young subjects participated in the following studies: study I, infusion of L-arginine (1 g/min for 30 min); study II, infusion of L-arginine plus octreotide (25 microg as i.v. bolus + 0.5 microg/min) to block endogenous insulin and glucagon secretion, plus replacement of basal insulin and glucagon; study III, infusion of L-arginine plus octreotide plus basal glucagon plus an insulin infusion designed to mimic the insulin response of study I. L-Arginine infusion significantly reduced systolic (11+/-3, mean+/-SE) and diastolic (8+/-2 mmHg, P < 0.001) blood pressure, platelet aggregation (20+/-4%), and blood viscosity (1.6+/-0.2 centipois, P < 0.01), and increased leg blood flow (97+/-16 ml/min), heart rate, and plasma catecholamine levels (P < 0.01). In study II, plasma insulin levels remained suppressed at baseline; in this condition, the vascular responses to L-arginine were significantly reduced, except for plasma catecholamines which did not change significantly. In study III, the plasma insulin response to L-arginine was reestablished; this was associated with hemodynamic and rheologic changes following L-arginine not significantly different from those recorded in study I. These findings show that systemic infusion of L-arginine in healthy subjects induces vasodilation and inhibits platelet aggregation and blood viscosity. These effects are mediated, in part, by endogenous released insulin.

Version history
  • Version 1 (February 1, 1997): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts