Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI119175

Direct glucocorticoid inhibition of insulin secretion. An in vitro study of dexamethasone effects in mouse islets.

C Lambillotte, P Gilon, and J C Henquin

Unité d'Endocrinologie et Métabolisme, University of Louvain Faculty of Medicine, Brussels, Belgium.

Find articles by Lambillotte, C. in: PubMed | Google Scholar

Unité d'Endocrinologie et Métabolisme, University of Louvain Faculty of Medicine, Brussels, Belgium.

Find articles by Gilon, P. in: PubMed | Google Scholar

Unité d'Endocrinologie et Métabolisme, University of Louvain Faculty of Medicine, Brussels, Belgium.

Find articles by Henquin, J. in: PubMed | Google Scholar

Published February 1, 1997 - More info

Published in Volume 99, Issue 3 on February 1, 1997
J Clin Invest. 1997;99(3):414–423. https://doi.org/10.1172/JCI119175.
© 1997 The American Society for Clinical Investigation
Published February 1, 1997 - Version history
View PDF
Abstract

The direct effects of glucocorticoids on pancreatic beta cell function were studied with normal mouse islets. Dexamethasone inhibited insulin secretion from cultured islets in a concentration-dependent manner: maximum of approximately 75% at 250 nM and IC50 at approximately 20 nM dexamethasone. This inhibition was of slow onset (0, 20, and 40% after 1, 2, and 3 h) and only slowly reversible. It was prevented by a blocker of nuclear glucocorticoid receptors, by pertussis toxin, by a phorbol ester, and by dibutyryl cAMP, but was unaffected by an increase in the fuel content of the culture medium. Dexamethasone treatment did not affect islet cAMP levels but slightly reduced inositol phosphate formation. After 18 h of culture with or without 1 microM dexamethasone, the islets were perifused and stimulated by a rise in the glucose concentration from 3 to 15 mM. Both phases of insulin secretion were similarly decreased in dexamethasone-treated islets as compared with control islets. This inhibition could not be ascribed to a lowering of insulin stores (higher in dexamethasone-treated islets), to an alteration of glucose metabolism (glucose oxidation and NAD(P)H changes were unaffected), or to a lesser rise of cytoplasmic Ca2+ in beta cells (only the frequency of the oscillations was modified). Dexamethasone also inhibited insulin secretion induced by arginine, tolbutamide, or high K+. In this case also the inhibition was observed despite a normal rise of cytoplasmic Ca2+. In conclusion, dexamethasone inhibits insulin secretion through a genomic action in beta cells that leads to a decrease in the efficacy of cytoplasmic Ca2+ on the exocytotic process.

Version history
  • Version 1 (February 1, 1997): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts