Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI119160

Lipopolysaccharide binding protein and soluble CD14 catalyze exchange of phospholipids.

B Yu, E Hailman, and S D Wright

Laboratory of Cellular Physiology and Immunology, The Rockefeller University, New York, New York 10021, USA.

Find articles by Yu, B. in: PubMed | Google Scholar

Laboratory of Cellular Physiology and Immunology, The Rockefeller University, New York, New York 10021, USA.

Find articles by Hailman, E. in: PubMed | Google Scholar

Laboratory of Cellular Physiology and Immunology, The Rockefeller University, New York, New York 10021, USA.

Find articles by Wright, S. in: PubMed | Google Scholar

Published January 15, 1997 - More info

Published in Volume 99, Issue 2 on January 15, 1997
J Clin Invest. 1997;99(2):315–324. https://doi.org/10.1172/JCI119160.
© 1997 The American Society for Clinical Investigation
Published January 15, 1997 - Version history
View PDF
Abstract

Lipopolysaccharide binding protein (LBP) is a plasma protein known to facilitate the diffusion of bacterial LPS (endotoxin). LBP catalyzes movement of LPS monomers from LPS aggregates to HDL particles, to phospholipid bilayers, and to a binding site on a second plasma protein, soluble CD14 (sCD14). sCD14 can hasten transfer by receiving an LPS monomer from an LPS aggregate, and then surrendering it to an HDL particle, thus acting as a soluble "shuttle" for an insoluble lipid. Here we show that LBP and sCD14 shuttle not only LPS, but also phospholipids. Phosphatidylinositol (PI), phosphatidylcholine, and a fluorescently labeled derivative of phosphatidylethanolamine (R-PE) are each transferred by LBP from membranes to HDL particles. The transfer could be observed using recombinant LBP and sCD14 or whole human plasma, and the plasma-mediated transfer of PI could be blocked by anti-LBP and partially inhibited by anti-CD14. sCD14 appears to act as a soluble shuttle for phospholipids since direct binding of PI and R-PE to sCD14 was observed and because addition of sCD14 accelerated transfer of these lipids. These studies define a new function for LBP and sCD14 and describe a novel mechanism for the transfer of phospholipids in blood. In further studies, we show evidence suggesting that LBP transfers LPS and phospholipids by reciprocal exchange: LBP-catalyzed binding of R-PE to LPS x sCD14 complexes was accompanied by the exit of LPS from sCD14, and LBP-catalyzed binding of R-PE to sCD14 was accelerated by prior binding of LPS to sCD14. Binding of one lipid is thus functionally coupled with the release of a second. These results suggest that LBP acts as a lipid exchange protein.

Version history
  • Version 1 (January 15, 1997): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts