Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI119150

Deficiency of Src family kinases Fgr and Hck results in activation of erythrocyte K/Cl cotransport.

L De Franceschi, L Fumagalli, O Olivieri, R Corrocher, C A Lowell, and G Berton

Institute of Internal Medicine, University of Verona, Italy.

Find articles by De Franceschi, L. in: PubMed | Google Scholar

Institute of Internal Medicine, University of Verona, Italy.

Find articles by Fumagalli, L. in: PubMed | Google Scholar

Institute of Internal Medicine, University of Verona, Italy.

Find articles by Olivieri, O. in: PubMed | Google Scholar

Institute of Internal Medicine, University of Verona, Italy.

Find articles by Corrocher, R. in: PubMed | Google Scholar

Institute of Internal Medicine, University of Verona, Italy.

Find articles by Lowell, C. in: PubMed | Google Scholar

Institute of Internal Medicine, University of Verona, Italy.

Find articles by Berton, G. in: PubMed | Google Scholar

Published January 15, 1997 - More info

Published in Volume 99, Issue 2 on January 15, 1997
J Clin Invest. 1997;99(2):220–227. https://doi.org/10.1172/JCI119150.
© 1997 The American Society for Clinical Investigation
Published January 15, 1997 - Version history
View PDF
Abstract

Src-family kinases play a central role in regulation of hematopoietic cell functions. We found that mouse erythrocytes express the Src-family kinases Fgr and Hck, as well as Lyn. To directly test whether Fgr and Hck play any role in erythrocyte function, we analyzed red cells isolated from fgr-/-, hck-/-, and fgr-/- hck-/- knock-out mice. Mean corpuscular hemoglobin concentration and median density are increased, while K content is decreased, in fgr-/- hck-/- double-mutant erythrocytes compared with wild-type, fgr-/-, or hck-/- erythrocytes. Na/K pump and Na/K/Cl cotransport were not altered, but K/Cl cotransport activity was significantly and substantially higher (approximately three-fold) in fgr-/- hck-/- double-mutant erythrocytes. This enhanced K/Cl cotransport activity did not depend on cell age. In fact, in response to bleeding, K/Cl cotransport activity increased in parallel with reticulocytosis in wild-type erythrocytes, while abnormal K/Cl cotransport did not change as a consequence of reticulocytosis in fgr-/- hck-/- double-mutant erythrocytes. Okadaic acid, an inhibitor of a phosphatase that has been implicated in activation of the K/Cl cotransporter, inhibited K/Cl cotransport in wild-type and fgr-/- hck-/- double-mutant erythrocytes to a comparable extent. In contrast, staurosporine, an inhibitor of a kinase that has been suggested to negatively regulate this same phosphatase enhanced K/Cl cotransport in wild-type but not in fgr-/- hck-/- double-mutant erythrocytes. On the basis of these findings, we propose that Fgr and Hck are the kinases involved in the negative regulation of the K/Cl cotransporter-activating phosphatase. Abnormality of erythrocyte K/Cl cotransport in fgr-/- hck-/- double-mutant animals represents the first demonstration that Src-family kinases may be involved in regulation of membrane transport.

Version history
  • Version 1 (January 15, 1997): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts