Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI119144

Shared gamma(c) subunit within the human interleukin-7 receptor complex. A molecular basis for the pathogenesis of X-linked severe combined immunodeficiency.

S Y Lai, J Molden, and M A Goldsmith

Gladstone Institute of Virology and Immunology, San Francisco, California 94141-9100, USA.

Find articles by Lai, S. in: PubMed | Google Scholar

Gladstone Institute of Virology and Immunology, San Francisco, California 94141-9100, USA.

Find articles by Molden, J. in: PubMed | Google Scholar

Gladstone Institute of Virology and Immunology, San Francisco, California 94141-9100, USA.

Find articles by Goldsmith, M. in: PubMed | Google Scholar

Published January 15, 1997 - More info

Published in Volume 99, Issue 2 on January 15, 1997
J Clin Invest. 1997;99(2):169–177. https://doi.org/10.1172/JCI119144.
© 1997 The American Society for Clinical Investigation
Published January 15, 1997 - Version history
View PDF
Abstract

Genetic evidence suggests that mutations in the gamma(c) receptor subunit cause X-linked severe combined immunodeficiency (X-SCID). The gamma(c) subunit can be employed in receptor complexes for IL-2, -4, -7, -9, and -15, and the multiple signaling defects that would result from a defective gamma(c) chain in these receptors are proposed to cause the severe phenotype of X-SCID patients. Interestingly, gene disruption of either IL-7 or the IL-7 receptor (IL-7R) alpha subunit in mice leads to immunological defects that are similar to human X-SCID. These observations suggest the functional importance of gamma(c) in the IL-7R complex. In the present study, structure/function analyses of the IL-7R complex using a chimeric receptor system demonstrated that gamma(c) is indeed critical for IL-7R function. Nonetheless, only a limited portion of the cytoplasmic domain of gamma(c) is necessary for IL-7R signal transduction. Furthermore, replacement of the gamma(c) cytoplasmic domain by a severely truncated erythropoeitin receptor does not affect measured IL-7R signaling events. These findings support a model in which gamma(c) serves primarily to activate signal transduction by the IL-7R complex, while IL-7R alpha determines specific signaling events through its association with cytoplasmic signaling molecules. Finally, these studies are consistent with the hypothesis that the molecular pathogenesis of X-SCID is due primarily to gamma(c)-mediated defects in the IL-7/IL-7R system.

Version history
  • Version 1 (January 15, 1997): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts