Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Local anesthetics as effectors of allosteric gating. Lidocaine effects on inactivation-deficient rat skeletal muscle Na channels.
J R Balser, … , G F Tomaselli, J H Lawrence
J R Balser, … , G F Tomaselli, J H Lawrence
Published December 15, 1996
Citation Information: J Clin Invest. 1996;98(12):2874-2886. https://doi.org/10.1172/JCI119116.
View: Text | PDF
Research Article

Local anesthetics as effectors of allosteric gating. Lidocaine effects on inactivation-deficient rat skeletal muscle Na channels.

  • Text
  • PDF
Abstract

Time- and voltage-dependent local anesthetic effects on sodium (Na) currents are generally interpreted using modulated receptor models that require formation of drug-associated nonconducting states with high affinity for the inactivated channel. The availability of inactivation-deficient Na channels has enabled us to test this traditional view of the drug-channel interaction. Rat skeletal muscle Na channels were mutated in the III-IV linker to disable fast inactivation (F1304Q: FQ). Lidocaine accelerated the decay of whole-cell FQ currents in Xenopus oocytes, reestablishing the wild-type phenotype; peak inward current at -20 mV was blocked with an IC50 of 513 microM, while plateau current was blocked with an IC50 of only 74 microM (P < 0.005 vs. peak). In single-channel experiments, mean open time was unaltered and unitary current was only reduced at higher drug concentrations, suggesting that open-channel block does not explain the effect of lidocaine on FQ plateau current. We considered a simple model in which lidocaine reduced the free energy for inactivation, causing altered coupling between activation and inactivation. This model readily simulated macroscopic Na current kinetics over a range of lidocaine concentrations. Traditional modulated receptor models which did not modify coupling between gating processes could not reproduce the effects of lidocaine with rate constants constrained by single-channel data. Our results support a reinterpretation of local anesthetic action whereby lidocaine functions as an allosteric effector to enhance Na channel inactivation.

Authors

J R Balser, H B Nuss, D W Orias, D C Johns, E Marban, G F Tomaselli, J H Lawrence

×

Usage data is cumulative from August 2024 through August 2025.

Usage JCI PMC
Text version 186 36
PDF 63 23
Citation downloads 90 0
Totals 339 59
Total Views 398
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts