Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI119114

Tumor necrosis factor alpha-induced apoptosis in cardiac myocytes. Involvement of the sphingolipid signaling cascade in cardiac cell death.

K A Krown, M T Page, C Nguyen, D Zechner, V Gutierrez, K L Comstock, C C Glembotski, P J Quintana, and R A Sabbadini

Department of Biology, San Diego State University, California 92182, USA.

Find articles by Krown, K. in: PubMed | Google Scholar

Department of Biology, San Diego State University, California 92182, USA.

Find articles by Page, M. in: PubMed | Google Scholar

Department of Biology, San Diego State University, California 92182, USA.

Find articles by Nguyen, C. in: PubMed | Google Scholar

Department of Biology, San Diego State University, California 92182, USA.

Find articles by Zechner, D. in: PubMed | Google Scholar

Department of Biology, San Diego State University, California 92182, USA.

Find articles by Gutierrez, V. in: PubMed | Google Scholar

Department of Biology, San Diego State University, California 92182, USA.

Find articles by Comstock, K. in: PubMed | Google Scholar

Department of Biology, San Diego State University, California 92182, USA.

Find articles by Glembotski, C. in: PubMed | Google Scholar

Department of Biology, San Diego State University, California 92182, USA.

Find articles by Quintana, P. in: PubMed | Google Scholar

Department of Biology, San Diego State University, California 92182, USA.

Find articles by Sabbadini, R. in: PubMed | Google Scholar

Published December 15, 1996 - More info

Published in Volume 98, Issue 12 on December 15, 1996
J Clin Invest. 1996;98(12):2854–2865. https://doi.org/10.1172/JCI119114.
© 1996 The American Society for Clinical Investigation
Published December 15, 1996 - Version history
View PDF
Abstract

In the present study, it was shown that physiologically relevant levels of the proinflammatory cytokine TNFalpha induced apoptosis in rat cardiomyocytes in vitro, as quantified by single cell microgel electrophoresis of nuclei ("cardiac comets") as well as by morphological and biochemical criteria. It was also shown that TNFalpha stimulated production of the endogenous second messenger, sphingosine, suggesting sphingolipid involvement in TNFalpha-mediated cardiomyocyte apoptosis. Consistent with this hypothesis, sphingosine strongly induced cardiomyocyte apoptosis. The ability of the appropriate stimulus to drive cardiomyocytes into apoptosis indicated that these cells were primed for apoptosis and were susceptible to clinically relevant apoptotic triggers, such as TNFalpha. These findings suggest that the elevated TNFalpha levels seen in a variety of clinical conditions, including sepsis and ischemic myocardial disorders, may contribute to TNFalpha-induced cardiac cell death. Cardiomyocyte apoptosis is also discussed in terms of its potential beneficial role in limiting the area of cardiac cell involvement as a consequence of myocardial infarction, viral infection, and primary cardiac tumors.

Version history
  • Version 1 (December 15, 1996): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts