Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Relaxin induces an extracellular matrix-degrading phenotype in human lung fibroblasts in vitro and inhibits lung fibrosis in a murine model in vivo.
E N Unemori, … , M E Erikson, E P Amento
E N Unemori, … , M E Erikson, E P Amento
Published December 15, 1996
Citation Information: J Clin Invest. 1996;98(12):2739-2745. https://doi.org/10.1172/JCI119099.
View: Text | PDF
Research Article

Relaxin induces an extracellular matrix-degrading phenotype in human lung fibroblasts in vitro and inhibits lung fibrosis in a murine model in vivo.

  • Text
  • PDF
Abstract

Pulmonary fibrosis is the common end stage of a number of pneumopathies. In this study, we examined the ability of the human cytokine, relaxin, to block extracellular matrix deposition by human lung fibroblasts in vitro, and to inhibit lung fibrosis in a bleomycin-induced murine model. In vitro, relaxin (1-100 ng/ml) inhibited the transforming growth factor-beta-mediated over-expression of interstitial collagen types I and III by human lung fibroblasts by up to 45% in a dose-dependent manner. Relaxin did not affect basal levels of collagen expression in the absence of TGF-beta-induced stimulation. Relaxin also blocked transforming growth factor-beta-induced upregulation of fibronectin by 80% at the highest relaxin dose tested (100 ng/ml). The expression of matrix metalloproteinase-1, or procollagenase, was stimulated in a biphasic, dose-dependent manner by relaxin. In vivo, relaxin, at a steady state circulating concentration of approximately 50 ng/ml, inhibited bleomycin-mediated alveolar thickening compared with the vehicle only control group (P < 0.05). Relaxin also restored bleomycin-induced collagen accumulation, as measured by lung hydroxyproline content, to normal levels (P < 0.05). In summary, relaxin induced a matrix degradative phenotype in human lung fibroblasts in vitro and inhibited bleomycin-induced fibrosis in a murine model in vivo. These data indicate that relaxin may be efficacious in the treatment of pathologies characterized by lung fibrosis.

Authors

E N Unemori, L B Pickford, A L Salles, C E Piercy, B H Grove, M E Erikson, E P Amento

×

Usage data is cumulative from August 2024 through August 2025.

Usage JCI PMC
Text version 466 45
PDF 104 41
Citation downloads 81 0
Totals 651 86
Total Views 737
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts