Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI119082

Stimulated human lamina propria T cells manifest enhanced Fas-mediated apoptosis.

M Boirivant, R Pica, R DeMaria, R Testi, F Pallone, and W Strober

Immunology Department, Istituto Superiore di Sanità, Rome, Italy.

Find articles by Boirivant, M. in: PubMed | Google Scholar

Immunology Department, Istituto Superiore di Sanità, Rome, Italy.

Find articles by Pica, R. in: PubMed | Google Scholar

Immunology Department, Istituto Superiore di Sanità, Rome, Italy.

Find articles by DeMaria, R. in: PubMed | Google Scholar

Immunology Department, Istituto Superiore di Sanità, Rome, Italy.

Find articles by Testi, R. in: PubMed | Google Scholar

Immunology Department, Istituto Superiore di Sanità, Rome, Italy.

Find articles by Pallone, F. in: PubMed | Google Scholar

Immunology Department, Istituto Superiore di Sanità, Rome, Italy.

Find articles by Strober, W. in: PubMed | Google Scholar

Published December 1, 1996 - More info

Published in Volume 98, Issue 11 on December 1, 1996
J Clin Invest. 1996;98(11):2616–2622. https://doi.org/10.1172/JCI119082.
© 1996 The American Society for Clinical Investigation
Published December 1, 1996 - Version history
View PDF
Abstract

Lamina propria (LP) T cells respond poorly to a proliferative stimulus delivered via TCR/CD3 pathway, but retain considerable ability to respond to a stimulus delivered via CD2 costimulatory or accessory pathway. In the present study, we showed first that unstimulated LP T cells, as compared to unstimulated peripheral blood (PB) T cells, exhibit an increased level of apoptosis which is further increased following CD2 pathway stimulation, but not following via TCR/CD3 pathway stimulation. We next showed that IL-2 had a sparing effect on apoptosis of unstimulated LP T cells in that IL-2 decreased and anti-IL-2 increased apoptosis of these cells; in contrast, IL-2 had no effect on apoptosis of CD2-pathway stimulated cells. Finally, we showed that increased apoptosis of LP T cells induced by CD2-pathway stimulation is inhibited when Fas antigen is blocked by a nonstimulatory anti-Fas antibody. These studies suggest that LP T cells are characterized by increased susceptibility to Fas-mediated apoptosis most due to a downstream change in the Fas signaling pathway. Given that IFN-gamma secretion is significantly increased in LP T cells in which apoptosis is inhibited, this feature of LP T cells may represent a mechanism of regulating detrimental immune responses in the mucosal environment.

Version history
  • Version 1 (December 1, 1996): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts