Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI119079

Naturally processed T cell epitopes from human glutamic acid decarboxylase identified using mice transgenic for the type 1 diabetes-associated human MHC class II allele, DRB1*0401.

L S Wicker, S L Chen, G T Nepom, J F Elliott, D C Freed, A Bansal, S Zheng, A Herman, A Lernmark, D M Zaller, L B Peterson, J B Rothbard, R Cummings, and P J Whiteley

Department of Autoimmune Diseases Research, Merck Research Laboratories, Rahway, New Jersey 07065-0900, USA. linda_wicker@merck.com

Find articles by Wicker, L. in: JCI | PubMed | Google Scholar

Department of Autoimmune Diseases Research, Merck Research Laboratories, Rahway, New Jersey 07065-0900, USA. linda_wicker@merck.com

Find articles by Chen, S. in: JCI | PubMed | Google Scholar

Department of Autoimmune Diseases Research, Merck Research Laboratories, Rahway, New Jersey 07065-0900, USA. linda_wicker@merck.com

Find articles by Nepom, G. in: JCI | PubMed | Google Scholar

Department of Autoimmune Diseases Research, Merck Research Laboratories, Rahway, New Jersey 07065-0900, USA. linda_wicker@merck.com

Find articles by Elliott, J. in: JCI | PubMed | Google Scholar

Department of Autoimmune Diseases Research, Merck Research Laboratories, Rahway, New Jersey 07065-0900, USA. linda_wicker@merck.com

Find articles by Freed, D. in: JCI | PubMed | Google Scholar

Department of Autoimmune Diseases Research, Merck Research Laboratories, Rahway, New Jersey 07065-0900, USA. linda_wicker@merck.com

Find articles by Bansal, A. in: JCI | PubMed | Google Scholar

Department of Autoimmune Diseases Research, Merck Research Laboratories, Rahway, New Jersey 07065-0900, USA. linda_wicker@merck.com

Find articles by Zheng, S. in: JCI | PubMed | Google Scholar

Department of Autoimmune Diseases Research, Merck Research Laboratories, Rahway, New Jersey 07065-0900, USA. linda_wicker@merck.com

Find articles by Herman, A. in: JCI | PubMed | Google Scholar

Department of Autoimmune Diseases Research, Merck Research Laboratories, Rahway, New Jersey 07065-0900, USA. linda_wicker@merck.com

Find articles by Lernmark, A. in: JCI | PubMed | Google Scholar

Department of Autoimmune Diseases Research, Merck Research Laboratories, Rahway, New Jersey 07065-0900, USA. linda_wicker@merck.com

Find articles by Zaller, D. in: JCI | PubMed | Google Scholar

Department of Autoimmune Diseases Research, Merck Research Laboratories, Rahway, New Jersey 07065-0900, USA. linda_wicker@merck.com

Find articles by Peterson, L. in: JCI | PubMed | Google Scholar

Department of Autoimmune Diseases Research, Merck Research Laboratories, Rahway, New Jersey 07065-0900, USA. linda_wicker@merck.com

Find articles by Rothbard, J. in: JCI | PubMed | Google Scholar

Department of Autoimmune Diseases Research, Merck Research Laboratories, Rahway, New Jersey 07065-0900, USA. linda_wicker@merck.com

Find articles by Cummings, R. in: JCI | PubMed | Google Scholar

Department of Autoimmune Diseases Research, Merck Research Laboratories, Rahway, New Jersey 07065-0900, USA. linda_wicker@merck.com

Find articles by Whiteley, P. in: JCI | PubMed | Google Scholar

Published December 1, 1996 - More info

Published in Volume 98, Issue 11 on December 1, 1996
J Clin Invest. 1996;98(11):2597–2603. https://doi.org/10.1172/JCI119079.
© 1996 The American Society for Clinical Investigation
Published December 1, 1996 - Version history
View PDF
Abstract

The identification of class II binding peptide epitopes from autoimmune disease-related antigens is an essential step in the development of antigen-specific immune modulation therapy. In the case of type 1 diabetes, T cell and B cell reactivity to the autoantigen glutamic acid decarboxylase 65 (GAD65) is associated with disease development in humans and in nonobese diabetic (NOD) mice. In this study, we identify two DRB1*0401-restricted T cell epitopes from human GAD65, 274-286, and 115-127. Both peptides are immunogenic in transgenic mice expressing functional DRB1*0401 MHC class II molecules but not in nontransgenic littermates. Processing of GAD65 by antigen presenting cells (APC) resulted in the formation of DRB1*0401 complexes loaded with either the 274-286 or 115-127 epitopes, suggesting that these naturally derived epitopes may be displayed on APC recruited into pancreatic islets. The presentation of these two T cell epitopes in the islets of DRB1*0401 individuals who are at risk for type 1 diabetes may allow for antigen-specific recruitment of regulatory cells to the islets following peptide immunization.

Version history
  • Version 1 (December 1, 1996): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts