Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI119068

Intracellular demonstration of active TGFbeta1 in B cells and plasma cells of autoimmune mice. IgG-bound TGFbeta1 suppresses neutrophil function and host defense against Staphylococcus aureus infection.

T E Caver, F X O'Sullivan, L I Gold, and H D Gresham

Research Service, Harry S. Truman VA Medical Center, Columbia, Missouri 65201, USA.

Find articles by Caver, T. in: PubMed | Google Scholar

Research Service, Harry S. Truman VA Medical Center, Columbia, Missouri 65201, USA.

Find articles by O'Sullivan, F. in: PubMed | Google Scholar

Research Service, Harry S. Truman VA Medical Center, Columbia, Missouri 65201, USA.

Find articles by Gold, L. in: PubMed | Google Scholar

Research Service, Harry S. Truman VA Medical Center, Columbia, Missouri 65201, USA.

Find articles by Gresham, H. in: PubMed | Google Scholar

Published December 1, 1996 - More info

Published in Volume 98, Issue 11 on December 1, 1996
J Clin Invest. 1996;98(11):2496–2506. https://doi.org/10.1172/JCI119068.
© 1996 The American Society for Clinical Investigation
Published December 1, 1996 - Version history
View PDF
Abstract

Infection remains a leading cause of morbidity and mortality in patients with SLE. To investigate this, previously we assessed the host defense status of autoimmune MRL/lpr mice and found that elaboration of active TGFbeta suppressed neutrophil function and decreased survival in response to Staphylococcus aureus infection. The purpose of the present work was to elucidate the molecular form and the cellular source of the active TGFbeta involved. Here, we report for the first time that TGFbeta1 is found in the active form inside B cells and plasma cells and that it circulates in the plasma complexed with IgG in two murine models of systemic autoimmunity and in some patients with SLE. IgG-bound active TGFbeta1 is many times more potent than uncomplexed active TGFbeta1 for suppression of neutrophil function in vitro and host defense against S. aureus infection in vivo. These data indicate that TGFbeta1 is in the active form inside B cells and plasma cells, that the formation of a complex of IgG and active TGFbeta1 is greatly accelerated in autoimmunity, and that this complex is extremely potent for suppression of PMN function and host defense against bacterial infection.

Version history
  • Version 1 (December 1, 1996): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts