Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI119060

Postprandial stimulation of insulin release by glucose-dependent insulinotropic polypeptide (GIP). Effect of a specific glucose-dependent insulinotropic polypeptide receptor antagonist in the rat.

C C Tseng, T J Kieffer, L A Jarboe, T B Usdin, and M M Wolfe

Gastroenterology Division, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.

Find articles by Tseng, C. in: JCI | PubMed | Google Scholar

Gastroenterology Division, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.

Find articles by Kieffer, T. in: JCI | PubMed | Google Scholar

Gastroenterology Division, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.

Find articles by Jarboe, L. in: JCI | PubMed | Google Scholar

Gastroenterology Division, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.

Find articles by Usdin, T. in: JCI | PubMed | Google Scholar

Gastroenterology Division, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.

Find articles by Wolfe, M. in: JCI | PubMed | Google Scholar

Published December 1, 1996 - More info

Published in Volume 98, Issue 11 on December 1, 1996
J Clin Invest. 1996;98(11):2440–2445. https://doi.org/10.1172/JCI119060.
© 1996 The American Society for Clinical Investigation
Published December 1, 1996 - Version history
View PDF
Abstract

Glucose-dependent insulinotropic polypeptide (GIP) is a 42-amino acid peptide produced by K cells of the mammalian proximal small intestine and is a potent stimulant of insulin release in the presence of hyperglycemia. However, its relative physiological importance as a postprandial insulinotropic agent is unknown. Using LGIPR2 cells stably transfected with rat GIP receptor cDNA, GIP (1-42) stimulation of cyclic adenosine monophosphate (cAMP) production was inhibited in a concentration-dependent manner by GIP (7-30)-NH2. Competition binding assays using stably transfected L293 cells demonstrated an IC50 for GIP receptor binding of 7 nmol/liter for GIP (1-42) and 200 nmol/liter for GIP (7-30)-NH2, whereas glucagonlike peptide-1 (GLP-1) binding to its receptor on ++betaTC3 cells was minimally displaced by GIP (7-30)-NH2. In fasted anesthetized rats, GIP (1-42) stimulated insulin release in a concentration-dependent manner, an effect abolished by the concomitant intraperitoneal administration of GIP (7-30)-NH2 (100 nmol/ kg). In contrast, glucose-, GLP-1-, and arginine-stimulated insulin release were not affected by GIP (7-30)-NH2. In separate experiments, GIP (7-30)-NH2 (100 nmol/kg) reduced postprandial insulin release in conscious rats by 72%. It is concluded that GIP (7-30)-NH2 is a GIP-specific receptor antagonist and that GIP plays a dominant role in mediating postprandial insulin release.

Version history
  • Version 1 (December 1, 1996): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts