Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI119040

Aggrecan is degraded by matrix metalloproteinases in human arthritis. Evidence that matrix metalloproteinase and aggrecanase activities can be independent.

A J Fosang, K Last, and R A Maciewicz

University of Melbourne, Department of Paediatrics, Royal Children's Hospital, Parkville, Australia. fosang@cryptic.rch.unimelb.edu.au

Find articles by Fosang, A. in: PubMed | Google Scholar

University of Melbourne, Department of Paediatrics, Royal Children's Hospital, Parkville, Australia. fosang@cryptic.rch.unimelb.edu.au

Find articles by Last, K. in: PubMed | Google Scholar

University of Melbourne, Department of Paediatrics, Royal Children's Hospital, Parkville, Australia. fosang@cryptic.rch.unimelb.edu.au

Find articles by Maciewicz, R. in: PubMed | Google Scholar

Published November 15, 1996 - More info

Published in Volume 98, Issue 10 on November 15, 1996
J Clin Invest. 1996;98(10):2292–2299. https://doi.org/10.1172/JCI119040.
© 1996 The American Society for Clinical Investigation
Published November 15, 1996 - Version history
View PDF
Abstract

Proteolytic degradation of aggrecan is a hallmark of the pathology of arthritis, yet the identity of the enzyme(s) in cartilage responsible for this degradation is unknown. Previous studies have suggested that the matrix metalloproteinases (MMPs) may be involved but there has been no definitive evidence for their direct action in the proteolysis of aggrecan in human arthritis. We now show unequivocally that aggrecan fragments derived from the specific action of MMPs can be detected in synovial fluids from patients with both inflammatory and noninflammatory arthritis, with a neoepitope monoclonal antibody AF-28 that detects the NH2-terminal sequence F342FGVG.... The synovial fluid MMP fragments were of low buoyant density and distributed exclusively at the top of cesium chloride density gradients, suggesting that these fragments lacked chondroitin sulfate chains. AF-28 immunoblotting of synovial fluid aggrecan fragments revealed a population of small AF-28 fragments of 30-50 kD. Based on their size relative to characterized products of an MMP-8 digest (Fosang, A.J., K. Last, P. Gardiner, D.C. Jackson, and L. Brown. 1995, Biochem. J. 310:337-343), these AF-28 fragments were derived from proteinase cleavage at, or near, the ...ITEGE373 / ARGSV... aggrecanase site. Immunodetection with polyclonal anti-ITEGE antiserum revealed that these fragments lacked the ...ITEGE374 COOH terminus and were not therefore products of aggrecanase action. The same fluid samples contained a broad 68-90-kD G1 fragment that contained the COOH-terminal ...ITEGE374 neoepitope. The results suggest that in some circumstances, despite extensive proteolysis of the core protein, aggrecan molecules may be cleaved by MMPs or aggrecanase in the interglobular domain, but not both.

Version history
  • Version 1 (November 15, 1996): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts