Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI119023

In vivo nitrogen metabolism in ornithine transcarbamylase deficiency.

M Yudkoff, Y Daikhin, I Nissim, A Jawad, J Wilson, and M Batshaw

Division of Child Development, Children's Hospital of Philadelphia, Pennsylvania 19104, USA. myudkoff@mail.med.upenn.edu

Find articles by Yudkoff, M. in: PubMed | Google Scholar

Division of Child Development, Children's Hospital of Philadelphia, Pennsylvania 19104, USA. myudkoff@mail.med.upenn.edu

Find articles by Daikhin, Y. in: PubMed | Google Scholar

Division of Child Development, Children's Hospital of Philadelphia, Pennsylvania 19104, USA. myudkoff@mail.med.upenn.edu

Find articles by Nissim, I. in: PubMed | Google Scholar

Division of Child Development, Children's Hospital of Philadelphia, Pennsylvania 19104, USA. myudkoff@mail.med.upenn.edu

Find articles by Jawad, A. in: PubMed | Google Scholar

Division of Child Development, Children's Hospital of Philadelphia, Pennsylvania 19104, USA. myudkoff@mail.med.upenn.edu

Find articles by Wilson, J. in: PubMed | Google Scholar

Division of Child Development, Children's Hospital of Philadelphia, Pennsylvania 19104, USA. myudkoff@mail.med.upenn.edu

Find articles by Batshaw, M. in: PubMed | Google Scholar

Published November 1, 1996 - More info

Published in Volume 98, Issue 9 on November 1, 1996
J Clin Invest. 1996;98(9):2167–2173. https://doi.org/10.1172/JCI119023.
© 1996 The American Society for Clinical Investigation
Published November 1, 1996 - Version history
View PDF
Abstract

We developed a new technique that monitors metabolic competency in female heterozygotes for ornithine transcarbamylase deficiency (OTCD). The method uses mass spectrometry to measure conversion of (15)NH4Cl to [15N]urea and [5-(15)N]glutamine following an oral load of (15)NH4Cl. We found that heterozygotes converted significantly less NH3 nitrogen to urea, with this difference being particularly obvious for symptomatic carriers, in whom the blood [15N]urea concentration (mM) was significantly less than control values at most time points. The blood concentration of [5-(15)N]-glutamine (microM) was significantly higher in both asymptomatic and symptomatic heterozygotes than it was in the control subjects. The administration of a test dose of sodium phenylbutyrate to the control group did not affect the rate of [15N]urea formation. We conclude: (a) This test effectively monitors in vivo N metabolism and might obviate the need for liver biopsy to measure enzyme activity in OTCD; (b) Asymptomatic OTCD carriers form urea at a normal rate, indicating that ureagenesis can be competent even though enzyme activity is below normal; (c) Although ostensibly asymptomatic OTCD carriers form urea at a normal rate, their nitrogen metabolism is still abnormal, as reflected in their increased production of [5-(15)N]glutamine; and (d) This new test may be important for monitoring the efficacy of novel treatments for OTCD, e.g., liver transplantation and gene therapy.

Version history
  • Version 1 (November 1, 1996): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts