Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI118993

Processing and proliferative effects of human progastrin in transgenic mice.

T C Wang, T J Koh, A Varro, R J Cahill, C A Dangler, J G Fox, and G J Dockray

Department of Medicine, Massachusetts General Hospital, Boston 02114, USA. wang@helix.mgh.harvard.edu

Find articles by Wang, T. in: JCI | PubMed | Google Scholar

Department of Medicine, Massachusetts General Hospital, Boston 02114, USA. wang@helix.mgh.harvard.edu

Find articles by Koh, T. in: JCI | PubMed | Google Scholar

Department of Medicine, Massachusetts General Hospital, Boston 02114, USA. wang@helix.mgh.harvard.edu

Find articles by Varro, A. in: JCI | PubMed | Google Scholar

Department of Medicine, Massachusetts General Hospital, Boston 02114, USA. wang@helix.mgh.harvard.edu

Find articles by Cahill, R. in: JCI | PubMed | Google Scholar

Department of Medicine, Massachusetts General Hospital, Boston 02114, USA. wang@helix.mgh.harvard.edu

Find articles by Dangler, C. in: JCI | PubMed | Google Scholar

Department of Medicine, Massachusetts General Hospital, Boston 02114, USA. wang@helix.mgh.harvard.edu

Find articles by Fox, J. in: JCI | PubMed | Google Scholar

Department of Medicine, Massachusetts General Hospital, Boston 02114, USA. wang@helix.mgh.harvard.edu

Find articles by Dockray, G. in: JCI | PubMed | Google Scholar

Published October 15, 1996 - More info

Published in Volume 98, Issue 8 on October 15, 1996
J Clin Invest. 1996;98(8):1918–1929. https://doi.org/10.1172/JCI118993.
© 1996 The American Society for Clinical Investigation
Published October 15, 1996 - Version history
View PDF
Abstract

Incompletely processed gastrins have been postulated to play a role in growth of the gastrointestinal tract, but few studies have examined the effects of progastrin on mucosal proliferation in vivo. Human gastrin gene expression and progastrin processing were therefore studied in transgenic mice containing a human gastrin (hGAS) minigene, and compared to processing in mice bearing an insulin gastrin (INS-GAS) transgene that overexpresses amidated gastrin. Progastrin processing was studied using region-specific antisera and radioimmunoassays, biosynthetic labeling, immunoprecipitation, and HPLC. Proliferative effects due to overexpression of processed and unprocessed gastrin in INS-GAS and hGAS mice, respectively, were determined using routine histology and BrdU incorporation. The pancreatic islets of INS-GAS mice were able to produce carboxyamidated G-17, resulting in a twofold elevation of serum amidated gastrin, marked thickening of the oxyntic mucosa, and an increased BrdU labeling index (LI) of the gastric body. In contrast, livers of adult hGAS mice expressed abundant human gastrin mRNA and human progastrin but were unable to process this peptide to the mature amidated form, resulting in markedly elevated serum progastrin levels and normal amidated gastrin levels. Nevertheless, there was a marked increase in the BrdU labeling index of the colon in hGAS mice (LI 7.46+/-1.90%), as well as in INS-GAS mice (LI 6.16+/-1.17%), compared to age-matched, wild type control mice (LI 4.01+/-0.98%, P < 0.05). These studies suggest that incompletely processed gastrin precursors may contribute to colonic mucosal proliferation in vivo.

Version history
  • Version 1 (October 15, 1996): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts