Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI118987

Functional characterization of calcium-sensing receptor mutations expressed in human embryonic kidney cells.

S H Pearce, M Bai, S J Quinn, O Kifor, E M Brown, and R V Thakker

Medical Research Council Molecular Endocrinology Group, Medical Research Council Clinical Sciences Centre, Royal Postgraduate Medical School, London, United Kingdom. spearce@hgmp.mrc.ac.uk

Find articles by Pearce, S. in: JCI | PubMed | Google Scholar

Medical Research Council Molecular Endocrinology Group, Medical Research Council Clinical Sciences Centre, Royal Postgraduate Medical School, London, United Kingdom. spearce@hgmp.mrc.ac.uk

Find articles by Bai, M. in: JCI | PubMed | Google Scholar

Medical Research Council Molecular Endocrinology Group, Medical Research Council Clinical Sciences Centre, Royal Postgraduate Medical School, London, United Kingdom. spearce@hgmp.mrc.ac.uk

Find articles by Quinn, S. in: JCI | PubMed | Google Scholar

Medical Research Council Molecular Endocrinology Group, Medical Research Council Clinical Sciences Centre, Royal Postgraduate Medical School, London, United Kingdom. spearce@hgmp.mrc.ac.uk

Find articles by Kifor, O. in: JCI | PubMed | Google Scholar

Medical Research Council Molecular Endocrinology Group, Medical Research Council Clinical Sciences Centre, Royal Postgraduate Medical School, London, United Kingdom. spearce@hgmp.mrc.ac.uk

Find articles by Brown, E. in: JCI | PubMed | Google Scholar

Medical Research Council Molecular Endocrinology Group, Medical Research Council Clinical Sciences Centre, Royal Postgraduate Medical School, London, United Kingdom. spearce@hgmp.mrc.ac.uk

Find articles by Thakker, R. in: JCI | PubMed | Google Scholar

Published October 15, 1996 - More info

Published in Volume 98, Issue 8 on October 15, 1996
J Clin Invest. 1996;98(8):1860–1866. https://doi.org/10.1172/JCI118987.
© 1996 The American Society for Clinical Investigation
Published October 15, 1996 - Version history
View PDF
Abstract

The calcium-sensing receptor (CaR) is a G-protein-coupled receptor that plays a key role in extracellular calcium ion homeostasis. We have engineered 11 CaR mutants that have been described in the disorders familial benign hypercalcemia (FBH), neonatal severe hyperparathyroidism (NSHPT), and autosomal dominant hypocalcaemia (ADH), and studied their function by characterizing intracellular calcium [Ca2+]i transients in response to varying concentrations of extracellular calcium [Ca2+]o or gadolinium [Gd3+]o. The wild type receptor had an EC50 for calcium (EC50[Ca2+]o) (the value of [Ca2+]o producing half of the maximal increase in [Ca2+]i) of 4.0 mM (+/- 0.1 SEM). However, five missense mutations associated with FBH or NSHPT, (P55L, N178D, P221S, R227L, and V817I) had significantly higher EC50[Ca2+]os of between 5.5 and 9.3 mM (all P < 0.01). Another FBH mutation, Y218S, had an EC50[Ca2+]o of > 50 mM but had only a mildly attenuated response to gadolinium, while the FBH mutations, R680C and P747fs, were unresponsive to either calcium or gadolinium. In contrast, three mutations associated with ADH, (F128L, T151M, and E191K), showed significantly reduced EC50[Ca2+]os of between 2.2 and 2.8 mM (all P < 0.01). These findings provide insights into the functional domains of the CaR and demonstrate that mutations which enhance or reduce the responsiveness of the CaR to [Ca2+]o cause the disorders ADH, FBH, and NSHPT, respectively.

Version history
  • Version 1 (October 15, 1996): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts