Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI118981

A carboxy-terminal truncation of human alpha-galactosidase A in a heterozygous female with Fabry disease and modification of the enzymatic activity by the carboxy-terminal domain. Increased, reduced, or absent enzyme activity depending on number of amino acid residues deleted.

N Miyamura, E Araki, K Matsuda, R Yoshimura, N Furukawa, K Tsuruzoe, T Shirotani, H Kishikawa, K Yamaguchi, and M Shichiri

Department of Metabolic Medicine, Kumamoto University School of Medicine, Japan.

Find articles by Miyamura, N. in: JCI | PubMed | Google Scholar

Department of Metabolic Medicine, Kumamoto University School of Medicine, Japan.

Find articles by Araki, E. in: JCI | PubMed | Google Scholar

Department of Metabolic Medicine, Kumamoto University School of Medicine, Japan.

Find articles by Matsuda, K. in: JCI | PubMed | Google Scholar

Department of Metabolic Medicine, Kumamoto University School of Medicine, Japan.

Find articles by Yoshimura, R. in: JCI | PubMed | Google Scholar

Department of Metabolic Medicine, Kumamoto University School of Medicine, Japan.

Find articles by Furukawa, N. in: JCI | PubMed | Google Scholar

Department of Metabolic Medicine, Kumamoto University School of Medicine, Japan.

Find articles by Tsuruzoe, K. in: JCI | PubMed | Google Scholar

Department of Metabolic Medicine, Kumamoto University School of Medicine, Japan.

Find articles by Shirotani, T. in: JCI | PubMed | Google Scholar

Department of Metabolic Medicine, Kumamoto University School of Medicine, Japan.

Find articles by Kishikawa, H. in: JCI | PubMed | Google Scholar

Department of Metabolic Medicine, Kumamoto University School of Medicine, Japan.

Find articles by Yamaguchi, K. in: JCI | PubMed | Google Scholar

Department of Metabolic Medicine, Kumamoto University School of Medicine, Japan.

Find articles by Shichiri, M. in: JCI | PubMed | Google Scholar

Published October 15, 1996 - More info

Published in Volume 98, Issue 8 on October 15, 1996
J Clin Invest. 1996;98(8):1809–1817. https://doi.org/10.1172/JCI118981.
© 1996 The American Society for Clinical Investigation
Published October 15, 1996 - Version history
View PDF
Abstract

Fabry disease is an X-linked disorder of glycosphingolipid metabolism caused by a deficiency of alpha-galactosidase A (alpha-Gal A). We identified a novel mutation of alpha-Gal A gene in a family with Fabry disease, which converted a tyrosine at codon 365 to a stop and resulted in a truncation of the carboxy (C) terminus by 65 amino acid (AA) residues. In a heterozygote of this family, although the mutant and normal alleles were equally transcribed in cultured fibroblasts, lymphocyte alpha-Gal A activity was approximately 30% of the normal control and severe clinical symptoms were apparent. COS-1 cells transfected with this mutant cDNA showed a complete loss of its enzymatic activity. Furthermore, those cotransfected with mutant and wildtype cDNAs showed a lower alpha-Gal A activity than those with wild type alone (approximately 30% of wild type alone), which suggested the dominant negative effect of this mutation and implied the importance of the C terminus for its activity. Thus, we generated mutant cDNAs with various deletion of the C terminus, and analyzed. Unexpectedly, alpha-Gal A activity was enhanced by up to sixfold compared with wild-type when from 2 to 10 AA residues were deleted. In contrast, deletion of 12 or more AA acid residues resulted in a complete loss of enzyme activity. Our data suggest that the C-terminal region of alpha-Gal A plays an important role in the regulation of its enzyme activity.

Version history
  • Version 1 (October 15, 1996): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts