Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI118971

G-protein alpha subunit Gi(alpha)2 mediates erythropoietin signal transduction in human erythroid precursors.

B A Miller, L Bell, C A Hansen, J D Robishaw, M E Linder, and J Y Cheung

Department of Pediatrics, The Pennsylvania State University College of Medicine, The Milton S. Hershey Medical Center, Hershey 17033, USA.

Find articles by Miller, B. in: JCI | PubMed | Google Scholar

Department of Pediatrics, The Pennsylvania State University College of Medicine, The Milton S. Hershey Medical Center, Hershey 17033, USA.

Find articles by Bell, L. in: JCI | PubMed | Google Scholar

Department of Pediatrics, The Pennsylvania State University College of Medicine, The Milton S. Hershey Medical Center, Hershey 17033, USA.

Find articles by Hansen, C. in: JCI | PubMed | Google Scholar

Department of Pediatrics, The Pennsylvania State University College of Medicine, The Milton S. Hershey Medical Center, Hershey 17033, USA.

Find articles by Robishaw, J. in: JCI | PubMed | Google Scholar

Department of Pediatrics, The Pennsylvania State University College of Medicine, The Milton S. Hershey Medical Center, Hershey 17033, USA.

Find articles by Linder, M. in: JCI | PubMed | Google Scholar

Department of Pediatrics, The Pennsylvania State University College of Medicine, The Milton S. Hershey Medical Center, Hershey 17033, USA.

Find articles by Cheung, J. in: JCI | PubMed | Google Scholar

Published October 15, 1996 - More info

Published in Volume 98, Issue 8 on October 15, 1996
J Clin Invest. 1996;98(8):1728–1736. https://doi.org/10.1172/JCI118971.
© 1996 The American Society for Clinical Investigation
Published October 15, 1996 - Version history
View PDF
Abstract

Erythropoietin induces a dose-dependent increase in cytosolic calcium in human erythroblasts that is mediated by a voltage-independent Ca2+ channel. Inhibition of this response to erythropoietin by pertussis toxin suggests involvement of guanine nucleotide-binding regulatory proteins (G-proteins). The role of G-proteins in regulation of the erythropoietin-modulated Ca2+ channel was delineated here by microinjection of G-protein modulators or subunits into human erythroid precursors. This is the first report on the use of microinjection to study erythropoietin signal transduction in normal precursor cells. Fura-2 loaded day-10 burst-forming units-erythroid-derived erythroblasts were used for microinjection and free intracellular calcium concentration ([Ca(i)]) was measured with digital video imaging. BCECF (1,2',7'-bis(2-carboxyethyl)-5-(and -6-)-carboxyfluorescein) was included in microinjectate, and an increase in BCECF fluorescence was evidence of successful microinjection. Cells were microinjected with nonhydrolyzable analogues of GTP, GTPgammaS or GDPbetaS, which maintain the alpha subunit in an activated or inactivated state, respectively. [Ca(i)] increased significantly in a dose-dependent manner after microinjection of GTPgammaS. However, injection of GDPbetaS blocked the erythropoietin-induced calcium increase, providing direct evidence that activation of a G-protein is required. To delineate which G-protein subunits are involved, alpha or betagamma transducin subunits were purified and microinjected as a sink for betagamma or alpha subunits in the erythroblast, respectively. Transducin betagamma, but not alpha, subunits eliminated the calcium response to erythropoietin, demonstrating the primary role of the alpha subunit. Microinjected antibodies to Gi(alpha)2, but not Gi(alpha)1 or Gi(alpha)3, blocked the erythropoietin-stimulated [Ca(i)] rise, identifying Gi(alpha)2 as the subunit involved. This was confirmed by the ability of microinjected recombinant myristoylated Gi(alpha)2, but not Gi(alpha)1 or Gi(alpha)3 subunits, to reconstitute the response of pertussis toxin-treated erythroblasts to erythropoietin. These data directly demonstrate a physiologic function of G-proteins in hematopoietic cells and show that Gi(alpha)2 is required in erythropoietin modulation of [Ca(i)] via influx through calcium channels.

Version history
  • Version 1 (October 15, 1996): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts