Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI118969

Autoimmunity in Chagas' disease. Identification of cardiac myosin-B13 Trypanosoma cruzi protein crossreactive T cell clones in heart lesions of a chronic Chagas' cardiomyopathy patient.

E Cunha-Neto, V Coelho, L Guilherme, A Fiorelli, N Stolf, and J Kalil

Laboratory of Transplantation Immunology, Instituto do Coração, Faculdade de Medicina, Universidade de São Paulo, Brazil. edecunha@spider.usp.br

Find articles by Cunha-Neto, E. in: JCI | PubMed | Google Scholar

Laboratory of Transplantation Immunology, Instituto do Coração, Faculdade de Medicina, Universidade de São Paulo, Brazil. edecunha@spider.usp.br

Find articles by Coelho, V. in: JCI | PubMed | Google Scholar

Laboratory of Transplantation Immunology, Instituto do Coração, Faculdade de Medicina, Universidade de São Paulo, Brazil. edecunha@spider.usp.br

Find articles by Guilherme, L. in: JCI | PubMed | Google Scholar

Laboratory of Transplantation Immunology, Instituto do Coração, Faculdade de Medicina, Universidade de São Paulo, Brazil. edecunha@spider.usp.br

Find articles by Fiorelli, A. in: JCI | PubMed | Google Scholar

Laboratory of Transplantation Immunology, Instituto do Coração, Faculdade de Medicina, Universidade de São Paulo, Brazil. edecunha@spider.usp.br

Find articles by Stolf, N. in: JCI | PubMed | Google Scholar

Laboratory of Transplantation Immunology, Instituto do Coração, Faculdade de Medicina, Universidade de São Paulo, Brazil. edecunha@spider.usp.br

Find articles by Kalil, J. in: JCI | PubMed | Google Scholar

Published October 15, 1996 - More info

Published in Volume 98, Issue 8 on October 15, 1996
J Clin Invest. 1996;98(8):1709–1712. https://doi.org/10.1172/JCI118969.
© 1996 The American Society for Clinical Investigation
Published October 15, 1996 - Version history
View PDF
Abstract

Heart tissue destruction in chronic Chagas' disease cardiomyopathy (CCC) may be caused by autoimmune recognition of heart tissue by a mononuclear cell infiltrate decades after Trypanosoma cruzi infection. Indirect evidence suggests there is molecular mimicry between T. cruzi and heart tissue. In murine models of CCC, antibodies and CD4+ T cells recognize myosin, the major heart protein. We recently identified a heart-specific epitope of cardiac myosin heavy chain (residues 1442-1447, AAALDK) that is crossreactive with a homologous sequence (AAAGDK) of the immunodominant T. cruzi antigen B13. Furthermore, cardiac myosin-B13 crossreactive antibodies are present in 100% CCC patients vs 14% asymptomatic T. cruzi-seropositive individuals (P = 2.3 x 10(-6)), suggesting a role for molecular mimicry between cardiac myosin and B13 in CCC pathogenesis. In this paper, we obtained heart-infiltrating T cell clones from CCC patients to assess whether molecular mimicry between cardiac myosin and B13 is directly involved in the genesis of heart lesions. We identified T cell clones derived from CCC heart lesions simultaneously responsive to cardiac myosin heavy chain (but not skeletal myosin heavy chain) and B13 T. cruzi protein, but could not find T cell clones primarily reactive to any T. cruzi antigen. Together with the association of myosin-B13 crossreactive antibodies with CCC, the present data strongly suggest the relevance of molecular mimicry between cardiac myosin and the T. cruzi protein B13 in the pathogenesis of heart lesions in chronic Chagas' disease cardiomyopathy.

Version history
  • Version 1 (October 15, 1996): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts