Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Regional expression of sodium pump subunits isoforms and Na+-Ca++ exchanger in the human heart.
J Wang, … , E Erdmann, A A McDonough
J Wang, … , E Erdmann, A A McDonough
Published October 1, 1996
Citation Information: J Clin Invest. 1996;98(7):1650-1658. https://doi.org/10.1172/JCI118960.
View: Text | PDF
Research Article

Regional expression of sodium pump subunits isoforms and Na+-Ca++ exchanger in the human heart.

  • Text
  • PDF
Abstract

Cardiac glycosides exert a positive inotropic effect by inhibiting sodium pump (Na,K-ATPase) activity, decreasing the driving force for Na+-Ca++ exchange, and increasing cellular content and release of Ca++ during depolarization. Since the inotropic response will be a function of the level of expression of sodium pumps, which are alpha(beta) heterodimers, and of Na+-Ca++ exchangers, this study aimed to determine the regional pattern of expression of these transporters in the heart. Immunoblot assays of homogenate from atria, ventricles, and septa of 14 nonfailing human hearts established expression of Na,K-ATPase alpha1, alpha2, alpha3, beta1, and Na+-Ca++ exchangers in all regions. Na,K-ATPase beta2 expression is negligible, indicating that the human cardiac glycoside receptors are alpha1beta1, alpha2beta1, and alpha3beta1. alpha3, beta1, sodium pump activity, and Na+-Ca++ exchanger levels were 30-50% lower in atria compared to ventricles and/or septum; differences between ventricles and septum were insignificant. Functionally, the EC50 of the sodium channel activator BDF 9148 to increase force of contraction was lower in atria than ventricle muscle strips (0.36 vs. 1.54 microM). These results define the distribution of the cardiac glycoside receptor isoforms in the human heart and they demonstrate that atria have fewer sodium pumps, fewer Na+-Ca++ exchangers, and enhanced sensitivity to inotropic stimulation compared to ventricles.

Authors

J Wang, R H Schwinger, K Frank, J Müller-Ehmsen, P Martin-Vasallo, T A Pressley, A Xiang, E Erdmann, A A McDonough

×

Usage data is cumulative from July 2024 through July 2025.

Usage JCI PMC
Text version 229 20
PDF 57 16
Citation downloads 65 0
Totals 351 36
Total Views 387
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts