Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI118942

Passive transfer of anti-laminin 5 antibodies induces subepidermal blisters in neonatal mice.

Z Lazarova, C Yee, T Darling, R A Briggaman, and K B Yancey

Dermatology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.

Find articles by Lazarova, Z. in: PubMed | Google Scholar

Dermatology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.

Find articles by Yee, C. in: PubMed | Google Scholar

Dermatology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.

Find articles by Darling, T. in: PubMed | Google Scholar

Dermatology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.

Find articles by Briggaman, R. in: PubMed | Google Scholar

Dermatology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.

Find articles by Yancey, K. in: PubMed | Google Scholar

Published October 1, 1996 - More info

Published in Volume 98, Issue 7 on October 1, 1996
J Clin Invest. 1996;98(7):1509–1518. https://doi.org/10.1172/JCI118942.
© 1996 The American Society for Clinical Investigation
Published October 1, 1996 - Version history
View PDF
Abstract

Patients with a recently identified subepithelial blistering disease have IgG anti-laminin 5 autoantibodies. To determine if such antibodies can be pathogenic in vivo, we developed and characterized rabbit anti-laminin 5 IgG, and passively transferred these antibodies to neonatal mice. Immune rabbit IgG specifically bound human and murine epidermal basement membranes, immunoblotted and immunoprecipitated all laminin 5 subunits from extracts of human and murine keratinocytes, and showed no reactivity to other keratinocyte proteins or epithelial basement membranes that do not contain laminin 5. Mice (n = 29) receiving purified anti-laminin 5 IgG developed, in a dose-related fashion, circulating anti-laminin 5 antibodies, deposits of rabbit IgG and murine C3 in epidermal basement membranes, and subepidermal blisters of skin and mucous membranes. No alterations developed in controls (n = 14) receiving identical amounts of normal rabbit IgG. Passive transfer of anti-laminin 5 (but not control) IgG to neonatal C5- (n = 3) or mast cell-deficient (n = 3) mice produced subepidermal blisters with the same clinical, histologic, and immunopathologic features as those documented in BALB/c mice. These studies establish an animal model of a human blistering disease that can be used to define disease mechanisms and treatment modalities.

Version history
  • Version 1 (October 1, 1996): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts