Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Upcoming)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI118928

Molecular and functional evidence for in vitro cytokine enhancement of human and murine target cell sensitivity to glucocorticoids. TNF-alpha priming increases glucocorticoid inhibition of TNF-alpha-induced cytotoxicity/apoptosis.

M Costas, T Trapp, M P Pereda, J Sauer, R Rupprecht, V E Nahmod, J M Reul, F Holsboer, and E Arzt

Instituto de Investigaciones Médicas, Universidad de Buenos Aires, Argentina.

Find articles by Costas, M. in: JCI | PubMed | Google Scholar

Instituto de Investigaciones Médicas, Universidad de Buenos Aires, Argentina.

Find articles by Trapp, T. in: JCI | PubMed | Google Scholar

Instituto de Investigaciones Médicas, Universidad de Buenos Aires, Argentina.

Find articles by Pereda, M. in: JCI | PubMed | Google Scholar

Instituto de Investigaciones Médicas, Universidad de Buenos Aires, Argentina.

Find articles by Sauer, J. in: JCI | PubMed | Google Scholar

Instituto de Investigaciones Médicas, Universidad de Buenos Aires, Argentina.

Find articles by Rupprecht, R. in: JCI | PubMed | Google Scholar

Instituto de Investigaciones Médicas, Universidad de Buenos Aires, Argentina.

Find articles by Nahmod, V. in: JCI | PubMed | Google Scholar

Instituto de Investigaciones Médicas, Universidad de Buenos Aires, Argentina.

Find articles by Reul, J. in: JCI | PubMed | Google Scholar

Instituto de Investigaciones Médicas, Universidad de Buenos Aires, Argentina.

Find articles by Holsboer, F. in: JCI | PubMed | Google Scholar

Instituto de Investigaciones Médicas, Universidad de Buenos Aires, Argentina.

Find articles by Arzt, E. in: JCI | PubMed | Google Scholar

Published September 15, 1996 - More info

Published in Volume 98, Issue 6 on September 15, 1996
J Clin Invest. 1996;98(6):1409–1416. https://doi.org/10.1172/JCI118928.
© 1996 The American Society for Clinical Investigation
Published September 15, 1996 - Version history
View PDF
Abstract

Cytokine-induced glucocorticoid secretion and glucocorticoid inhibition of cytokine synthesis and pleiotropic actions act as important safeguards in preventing cytokine overreaction. We found that TNF-alpha increased glucocorticoid-induced transcriptional activity of the glucocorticoid receptor (GR) via the glucocorticoid response elements (GRE) in L-929 mouse fibroblasts transfected with a glucocorticoid-inducible reporter plasmid. In addition, TNF-alpha also enhanced GR number. The TNF-alpha effect on transcriptional activity was absent in other cell lines that express TNF-alpha receptors but not GRs, and became manifest when a GR expression vector was cotransfected, indicating that TNF-alpha, independent of any effect it may have on GR number, has a stimulatory effect on the glucocorticoid-induced transcriptional activity of the GR. Moreover, TNF-alpha increased GR binding to GRE. As a functional biological correlate of this mechanism, priming of L-929 cells with a low (noncytotoxic) dose of TNF-alpha significantly increased the sensitivity to glucocorticoid inhibition of TNF-alpha-induced cytotoxicity/apoptosis. TNF-alpha and IL-1 beta had the same stimulatory action on glucocorticoid-induced transcriptional activity of the GR via the GRE, in different types of cytokine/glucocorticoid target cells (glioma, pituitary, epithelioid). The phenomenon may therefore reflect a general molecular mechanism whereby cytokines modulate the transcriptional activity of the GR, thus potentiating the counterregulation by glucocorticoids at the level of their target cells.

Version history
  • Version 1 (September 15, 1996): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts