Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI118884

The human lumbar intervertebral disc: evidence for changes in the biosynthesis and denaturation of the extracellular matrix with growth, maturation, ageing, and degeneration.

J Antoniou, T Steffen, F Nelson, N Winterbottom, A P Hollander, R A Poole, M Aebi, and M Alini

Orthopaedic Research Laboratory, Royal Victoria Hospital, Montreal, Quebec, Canada.

Find articles by Antoniou, J. in: PubMed | Google Scholar

Orthopaedic Research Laboratory, Royal Victoria Hospital, Montreal, Quebec, Canada.

Find articles by Steffen, T. in: PubMed | Google Scholar

Orthopaedic Research Laboratory, Royal Victoria Hospital, Montreal, Quebec, Canada.

Find articles by Nelson, F. in: PubMed | Google Scholar

Orthopaedic Research Laboratory, Royal Victoria Hospital, Montreal, Quebec, Canada.

Find articles by Winterbottom, N. in: PubMed | Google Scholar

Orthopaedic Research Laboratory, Royal Victoria Hospital, Montreal, Quebec, Canada.

Find articles by Hollander, A. in: PubMed | Google Scholar

Orthopaedic Research Laboratory, Royal Victoria Hospital, Montreal, Quebec, Canada.

Find articles by Poole, R. in: PubMed | Google Scholar

Orthopaedic Research Laboratory, Royal Victoria Hospital, Montreal, Quebec, Canada.

Find articles by Aebi, M. in: PubMed | Google Scholar

Orthopaedic Research Laboratory, Royal Victoria Hospital, Montreal, Quebec, Canada.

Find articles by Alini, M. in: PubMed | Google Scholar

Published August 15, 1996 - More info

Published in Volume 98, Issue 4 on August 15, 1996
J Clin Invest. 1996;98(4):996–1003. https://doi.org/10.1172/JCI118884.
© 1996 The American Society for Clinical Investigation
Published August 15, 1996 - Version history
View PDF
Abstract

Very little is known about the turnover of extracellular matrix in the human intervertebral disc. We measured concentrations of specific molecules reflecting matrix synthesis and degradation in predetermined regions of 121 human lumbar intervertebral discs and correlated them with ageing and Thompson grade of degeneration. Synthesis in intervertebral discs, measured by immunoassay of the content of a putative aggrecan biosynthesis marker (846) and the content of types I and II procollagen markers, is highest in the neonatal and 2-5-yr age groups. The contents of these epitopes/molecules progressively diminished with increasing age. However, in the oldest age group (60-80 yr) and in highly degenerated discs, the type I procollagen epitope level increased significantly. The percentage of denatured type II collagen, assessed by the presence of an epitope that is exposed with cleavage of type II collagen, increased twofold from the neonatal discs to the young 2-5-yr age group. Thereafter, the percentage progressively decreased with increasing age; however, it increased significantly in the oldest group and in highly degenerate discs. We identified three matrix turnover phases. Phase I (growth) is characterized by active synthesis of matrix molecules and active denaturation of type II collagen. Phase II (maturation and ageing) is distinguished by a progressive drop in synthetic activity and a progressive reduction in denaturation of type 11 collagen. Phase III (degeneration and fibrotic) is illustrated by evidence for a lack of increased synthesis of aggrecan and type II procollagen, but also by an increase in collagen type II denaturation and type I procollagen synthesis, both dependent on age and grade of tissue degeneration.

Version history
  • Version 1 (August 15, 1996): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts