Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Citations to this article

The cytosolic subunit p67phox contains an NADPH-binding site that participates in catalysis by the leukocyte NADPH oxidase.
R M Smith, … , L M Chen, B M Babior
R M Smith, … , L M Chen, B M Babior
Published August 15, 1996
Citation Information: J Clin Invest. 1996;98(4):977-983. https://doi.org/10.1172/JCI118882.
View: Text | PDF
Research Article

The cytosolic subunit p67phox contains an NADPH-binding site that participates in catalysis by the leukocyte NADPH oxidase.

  • Text
  • PDF
Abstract

The NADPH-dependent respiratory burst oxidase of human neutrophils catalyzes the reduction of oxygen to superoxide using NADPH as the electron donor and is essential for normal host defenses. To gain insight into the function of the various oxidase subunits that are required for the full expression of catalytic activity, we studied the interactions between the 2',3'-dialdehyde derivative of NADPH (NADPH dialdehyde) and neutrophil cytosol. NADPH dialdehyde treatment of cytosol resulted in the loss of the ability of the cytosol to participate in cell-free oxidase activation; this inactivation was blocked by NADPH but not by NAD, NADP, or GTP. Partial purification of neutrophil cytosol yielded a single peak which could restore the activity lost in cytosol treated with NADPH dialdehyde. This peak contained p67phox but not p47phox or Rac2. Purified recombinant p67phox was similarly able to restore the activity lost in NADPH dialdehyde-treated cytosol and bound [32P]NADPH dialdehyde in a specific fashion. The activity of recombinant p67phox in cell-free oxidase assays was lost on treatment with NADPH dialdehyde. Together, these data suggest p67phox contains the catalytic NADPH-binding site of the leukocyte NADPH oxidase.

Authors

R M Smith, J A Connor, L M Chen, B M Babior

×

Loading citation information...
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts