Left ventricular hypertrophy (LVH) produced by aortic valve plication leads to increased myocardial cyclic GMP. We tested whether this was a result of increased soluble guanylate cyclase activity or nitric oxide (NO) synthase and its functional consequences. We used the nitric oxide donor 3-morpholino-sydnonimine (SIN-1) or the NO synthase inhibitor NG-nitro-l-arginine methyl ester (L-NAME) in 12 control and 12 LVH anesthetized open-chest mongrel dogs. L-NAME (6 mg/kg) or SIN-1 (1 microgram/kg per min) was infused into the left anterior descending coronary artery and regional segment work and cyclic GMP levels were determined. In vitro myocardial guanylate cyclase sensitivity (0.43 +/- 0.04 to 0.28 +/- 0.04 mM [EC50]) and maximal activity (10.1 +/- 2.9 to 25.5 +/- 6.5 pmol/mg protein per min) were significantly increased in LVH as compared with control animals in response to nitroprusside stimulation, but cyclic GMP-phosphodiesterase activity was similar. In LVH dogs, basal cyclic GMP was significantly elevated in vivo when compared with controls. Treatment of dogs with SIN-1 resulted in a significant increase in cyclic GMP in control (1.09 +/- 0.12 to 1.48 +/- 0.19 pmol/gram) and a greater increase in the LVH group (1.78 +/- 0.16 to 3.58 +/- 0.71 pmol/g). L-NAME had no effect on myocardial cyclic GMP levels in control or LVH dogs. Segment work decreased in the control group after SIN-1 (1,573 +/- 290 to 855 +/- 211 grams x mm/min). LVH dogs showed no decrement in work as a result of treatment with SIN-1. L-NAME did not cause significant changes in myocardial cyclic GMP, O2 consumption, or work in either control or LVH dogs, but vascular effects were evident. SIN-1 increased cyclic GMP, and with greater effect on LVH; however, this resulted in a decrement in function only in the control group. The greater increased cyclic GMP in LVH dogs is not related to increased NO production, but is related to significantly higher sensitivity and maximal activity of soluble myocardial guanylate cyclase.
J D Sadoff, P M Scholz, J Tse, H R Weiss
Usage data is cumulative from May 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 95 | 10 |
60 | 11 | |
Citation downloads | 57 | 0 |
Totals | 212 | 21 |
Total Views | 233 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.