Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI118822

Glucose- and GTP-dependent stimulation of the carboxyl methylation of CDC42 in rodent and human pancreatic islets and pure beta cells. Evidence for an essential role of GTP-binding proteins in nutrient-induced insulin secretion.

A Kowluru, S E Seavey, G Li, R L Sorenson, A J Weinhaus, R Nesher, M E Rabaglia, J Vadakekalam, and S A Metz

Department of Medicine and Division of Endocrinology, University of Wisconsin School of Medicine, Madison, Wisconsin 53792, USA.

Find articles by Kowluru, A. in: PubMed | Google Scholar

Department of Medicine and Division of Endocrinology, University of Wisconsin School of Medicine, Madison, Wisconsin 53792, USA.

Find articles by Seavey, S. in: PubMed | Google Scholar

Department of Medicine and Division of Endocrinology, University of Wisconsin School of Medicine, Madison, Wisconsin 53792, USA.

Find articles by Li, G. in: PubMed | Google Scholar

Department of Medicine and Division of Endocrinology, University of Wisconsin School of Medicine, Madison, Wisconsin 53792, USA.

Find articles by Sorenson, R. in: PubMed | Google Scholar

Department of Medicine and Division of Endocrinology, University of Wisconsin School of Medicine, Madison, Wisconsin 53792, USA.

Find articles by Weinhaus, A. in: PubMed | Google Scholar

Department of Medicine and Division of Endocrinology, University of Wisconsin School of Medicine, Madison, Wisconsin 53792, USA.

Find articles by Nesher, R. in: PubMed | Google Scholar

Department of Medicine and Division of Endocrinology, University of Wisconsin School of Medicine, Madison, Wisconsin 53792, USA.

Find articles by Rabaglia, M. in: PubMed | Google Scholar

Department of Medicine and Division of Endocrinology, University of Wisconsin School of Medicine, Madison, Wisconsin 53792, USA.

Find articles by Vadakekalam, J. in: PubMed | Google Scholar

Department of Medicine and Division of Endocrinology, University of Wisconsin School of Medicine, Madison, Wisconsin 53792, USA.

Find articles by Metz, S. in: PubMed | Google Scholar

Published July 15, 1996 - More info

Published in Volume 98, Issue 2 on July 15, 1996
J Clin Invest. 1996;98(2):540–555. https://doi.org/10.1172/JCI118822.
© 1996 The American Society for Clinical Investigation
Published July 15, 1996 - Version history
View PDF
Abstract

Several GTP-binding proteins (G-proteins) undergo post-translational modifications (isoprenylation and carboxyl methylation) in pancreatic beta cells. Herein, two of these were identified as CDC42 and rap 1, using Western blotting and immunoprecipitation. Confocal microscopic data indicated that CDC42 is localized only in islet endocrine cells but not in acinar cells of the pancreas. CDC42 undergoes a guanine nucleotide-specific membrane association and carboxyl methylation in normal rat islets, human islets, and pure beta (HIT or INS-1) cells. GTPgammaS-dependent carboxyl methylation of a 23-kD protein was also demonstrable in secretory granule fractions from normal islets or beta cells. AFC (a specific inhibitor of prenyl-cysteine carboxyl methyl transferases) blocked the carboxyl methylation of CDC42 in five types of insulin-secreting cells, without blocking GTPgammaS-induced translocation, implying that methylation is a consequence (not a cause) of transfer to membrane sites. High glucose (but not a depolarizing concentration of K+) induced the carboxyl methylation of CDC42 in intact cells, as assessed after specific immunoprecipitation. This effect was abrogated by GTP depletion using mycophenolic acid and was restored upon GTP repletion by coprovision of guanosine. In contrast, although rap 1 was also carboxyl methylated, it was not translocated to the particulate fraction by GTPgammaS; furthermore, its methylation was also stimulated by 40 mM K+ (suggesting a role which is not specific to nutrient stimulation). AFC also impeded nutrient-induced (but not K+-induced) insulin secretion from islets and beta cells under static or perifusion conditions, whereas an inactive structural analogue of AFC failed to inhibit insulin release. These effects were reproduced not only by S-adenosylhomocysteine (another methylation inhibitor), but also by GTP depletion. Thus, the glucose- and GTP-dependent carboxyl methylation of G-proteins such as CDC42 is an obligate step in the stimulus-secretion coupling of nutrient-induced insulin secretion, but not in the exocytotic event itself. Furthermore, AFC blocked glucose-activated phosphoinositide turnover, which may provide a partial biochemical explanation for its effect on secretion, and implies that certain G-proteins must be carboxyl methylated for their interaction with signaling effector molecules, a step which can be regulated by intracellular availability of GTP.

Version history
  • Version 1 (July 15, 1996): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts