Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI118806

Cloning of the mammalian type II iodothyronine deiodinase. A selenoprotein differentially expressed and regulated in human and rat brain and other tissues.

W Croteau, J C Davey, V A Galton, and D L St Germain

Department of Medicine, Dartmouth Medical School, Lebanon, New Hampshire 03756, USA.

Find articles by Croteau, W. in: PubMed | Google Scholar

Department of Medicine, Dartmouth Medical School, Lebanon, New Hampshire 03756, USA.

Find articles by Davey, J. in: PubMed | Google Scholar

Department of Medicine, Dartmouth Medical School, Lebanon, New Hampshire 03756, USA.

Find articles by Galton, V. in: PubMed | Google Scholar

Department of Medicine, Dartmouth Medical School, Lebanon, New Hampshire 03756, USA.

Find articles by St Germain, D. in: PubMed | Google Scholar

Published July 15, 1996 - More info

Published in Volume 98, Issue 2 on July 15, 1996
J Clin Invest. 1996;98(2):405–417. https://doi.org/10.1172/JCI118806.
© 1996 The American Society for Clinical Investigation
Published July 15, 1996 - Version history
View PDF
Abstract

The deiodination of thyroid hormones in extrathyroidal tissues plays an important role in modulating thyroid hormone action. The type II deiodinase (DII) converts thyroxine to the active hormone 3,5,3'-triiodothyronine, and in the rat is expressed in the brain, pituitary gland, and brown adipose tissue (BAT). Complementary DNAs (cDNAs) for the types I and III deiodinases (DI and DIII, respectively) have been isolated and shown to code for selenoproteins. However, information concerning the structure of the mammalian DII remains limited, and the pattern of its expression in human tissues is undefined. We report herein the identification and characterization of rat and human DII cDNAs. Both code for selenoproteins and exhibit limited regions of homology with the DI and DIII. In the rat pituitary and BAT, DII mRNA levels are altered more than 10-fold by changes in the thyroid hormone status of the animal. Northern analysis of RNA derived from human tissues reveals expression of DII transcripts in heart, skeletal muscle, placenta, fetal brain, and several regions of the adult brain. These studies demonstrate that: (a) the rat and human DII are selenoproteins, (b) DII expression in the rat is regulated, at least in part, at the pretranslational level in some tissues, and (c) DII is likely to be of considerable physiologic importance in thyroid hormone economy in the human fetus and adult.

Version history
  • Version 1 (July 15, 1996): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts