Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Citations to this article

Adenoviral-mediated transfer of the human endothelial nitric oxide synthase gene reduces acute hypoxic pulmonary vasoconstriction in rats.
S P Janssens, … , P Zoldhelyi, D Collen
S P Janssens, … , P Zoldhelyi, D Collen
Published July 15, 1996
Citation Information: J Clin Invest. 1996;98(2):317-324. https://doi.org/10.1172/JCI118795.
View: Text | PDF
Research Article

Adenoviral-mediated transfer of the human endothelial nitric oxide synthase gene reduces acute hypoxic pulmonary vasoconstriction in rats.

  • Text
  • PDF
Abstract

Nitric oxide (NO), a vasodilator involved in the regulation of pulmonary vascular tone, is synthesized by a family of enzymes, nitric oxide synthases (NOS). To investigate whether adenoviral-mediated overexpression of constitutive endothelial NOS (ceNOS) would attenuate hypoxic pulmonary vasoconstriction, we aerosolized 3 X 10(9) plaque forming units of a recombinant adenovirus containing the ceNOS gene (AdCMVceNOS) into rat lungs. Four days after infection, transgene expression was confirmed using immunoblot techniques. Diffuse ceNOS immunostaining was detected in alveoli and medium-sized and small pulmonary vessels of AdCMVceNOS-transduced lungs. AdCMVceNOS-transduction was associated with an 86% increase in [3H]arginine to [3H]citrulline conversion and a rise in pulmonary cGMP levels from 7 +/- 1 to 59 +/- 9 pmol/mg protein in lungs from AdCMVceNOS versus control rats, (P < 0.05). During acute hypoxia (FIO2 = 0.10) for 25 min, mean pulmonary artery pressure (PAP) increased significantly from 17 +/- 1 to 27 +/- 1 mmHg in rats aerosolized with saline (n = 4) and from 18 +/- 1 to 28 +/- 1 mmHg in rats given an adenoviral vector expressing a nuclear-targeted beta-galactosidase gene (AdCMV beta gal, n = 8). In contrast, in AdCMVceNOS-transduced rats (n = 8) the hypoxia-induced increase in PAP was significantly attenuated (18 +/- 1 to 23 +/- 2 mmHg). Systemic blood pressure was not affected by aerosol gene transfer. Thus, adenoviral-mediated ceNOS gene transfer to rat lungs increases ceNOS expression and activity, and reduces acute hypoxic pulmonary vasoconstriction. Aerosolized recombinant adenovirus overexpressing vasodilatory proteins can act as a selective pulmonary vasodilator and may hold promise as a future therapeutic strategy for pulmonary hypertension.

Authors

S P Janssens, K D Bloch, Z Nong, R D Gerard, P Zoldhelyi, D Collen

×

Loading citation information...
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts