Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact

Usage Information

Rat renal arcade segment expresses vasopressin-regulated water channel and vasopressin V2 receptor.
B K Kishore, … , J B Wade, M A Knepper
B K Kishore, … , J B Wade, M A Knepper
Published June 15, 1996
Citation Information: J Clin Invest. 1996;97(12):2763-2771. https://doi.org/10.1172/JCI118731.
View: Text | PDF
Research Article

Rat renal arcade segment expresses vasopressin-regulated water channel and vasopressin V2 receptor.

  • Text
  • PDF
Abstract

The arcades are long, branched renal tubules which connect deep and mid-cortical nephrons to cortical collecting ducts in the renal cortex. Because they are inaccessible by standard physiological techniques, their functions are poorly understood. In this paper, we demonstrate that the arcades are a site of expression of two proteins, aquaporin-2 (the vasopressin-regulated water channel) and the V2 vasopressin receptor, that are important to regulated water transport in the kidney. Using a peptide-derived polyclonal antibody to aquaporin-2, quantitative ELISA in microdissected segments showed that aquaporin-2 is highly expressed in arcades and that the expression is increased in response to restriction of fluid intake. Immunocytochemistry revealed abundant aquaporin-2 labeling of structures in the cortical labyrinth in a pattern similar to that of the Na(+)-Ca2+ exchanger and kallikrein, marker proteins expressed in arcades but not in cortical collecting ducts. RT-PCR experiments demonstrated substantial aquaporin-2 and V2 receptor mRNA in microdissected arcades. In situ hybridization, using 35S-labeled antisense cRNA probes for the V2 receptor demonstrated strong labeling of both arcades and cortical collecting ducts. Thus, these results indicate that the arcades contain the specific proteins associated with vasopressin-regulated water transport, and may be a heretofore unrecognized site of free water absorption.

Authors

B K Kishore, B Mandon, N B Oza, S R DiGiovanni, R A Coleman, N L Ostrowski, J B Wade, M A Knepper

×

Usage data is cumulative from August 2021 through August 2022.

Usage JCI PMC
Text version 131 18
PDF 14 9
Citation downloads 8 0
Totals 153 27
Total Views 180
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts