Rates of intestinal absorption and surface hydrolysis are determined by the interaction of two barriers: poorly stirred fluid adjacent to the mucosa, and the epithelial cell. These two barriers commonly are modeled as a fixed, flat layer of epithelium covered by a fixed thickness of unstirred fluid. To more accurately simulate these barriers in a villous mucosa, maltase activity (measured in vitro) was distributed over an anatomically correct model of rat jejunal villi. We then determined what interaction of the aqueous and epithelial barriers best predicted in vivo maltose hydrolysis rates measured over a broad range of infusate concentrations. Hydrolysis was accurately predicted by a model in which unstirred fluid extended from 20 microm over the villous tips throughout the intervillous space. In this model, the depth of diffusion into the intervillous space is inversely proportional to the efficiency of epithelial handling of the solute. As a result, both the aqueous barrier and the functional surface area are variables rather than constants. Some implications of our findings (relative to the conventional model) include: higher predicted Vmax, efficient handling of low concentrations of a solute at the villous tips while high concentrations must penetrate thick aqueous barriers, and sensitive regulation of transport rates via ease of access to the intervillous space.
M D Levitt, C Fine, J K Furne, D G Levitt
Usage data is cumulative from November 2024 through November 2025.
| Usage | JCI | PMC |
|---|---|---|
| Text version | 135 | 12 |
| 50 | 3 | |
| Citation downloads | 72 | 0 |
| Totals | 257 | 15 |
| Total Views | 272 | |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.