Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI118585

Neutrophil oxygen radical generation. Synergistic responses to tumor necrosis factor and mono/polyunsaturated fatty acids.

Y Li, A Ferrante, A Poulos, and D P Harvey

Department of Immunology, The Women's and Children's Hospital, South Australia.

Find articles by Li, Y. in: JCI | PubMed | Google Scholar

Department of Immunology, The Women's and Children's Hospital, South Australia.

Find articles by Ferrante, A. in: JCI | PubMed | Google Scholar

Department of Immunology, The Women's and Children's Hospital, South Australia.

Find articles by Poulos, A. in: JCI | PubMed | Google Scholar

Department of Immunology, The Women's and Children's Hospital, South Australia.

Find articles by Harvey, D. in: JCI | PubMed | Google Scholar

Published April 1, 1996 - More info

Published in Volume 97, Issue 7 on April 1, 1996
J Clin Invest. 1996;97(7):1605–1609. https://doi.org/10.1172/JCI118585.
© 1996 The American Society for Clinical Investigation
Published April 1, 1996 - Version history
View PDF
Abstract

In inflammatory reactions there are complex interactions of protein mediators (cytokines) and mediators derived from lipids. An important event in inflammation is superoxide production, in relation to microbicidal activity as well as tissue damage. We have studied interactions of lipid mediators with a cytokine mediator tumor necrosis factor alpha (TNF) in stimulating superoxide production by human neutrophils for this reason and because it throws light on intracellular signals activating this response. Pretreatment of neutrophils with TNF markedly augmented the amount of superoxide produced in response to AA but not to either a 20 carbon saturated fatty acid, or the hydroxy- or hydroperoxy-derivatives of AA. Not only were other polyunsaturated fatty acids (eicosapentanoic, docosahexaenoic, linolenic, linoleic acid) as effective as AA but so was the monounsaturated fatty acid, oleic acid. Indeed TNF primed the neutrophils for an increased response to a major mediator of inflammation, leukotriene B4, which is a product of AA metabolism via the lipoxygenase pathway. The data demonstrate that two major types of mediators generated during an inflammatory response have synergistic action on neutrophils in the generation of reactive oxygen species. In contrast, neutrophils primed with TNF and challenged with PGE2, a product of AA metabolism via the cyclooxygenase pathway, showed a reduced chemiluminescence response. This identifies an important interaction between unsaturated lipids and cytokines which is likely to play a critical role in disease processes and nutrient modulation of the immune responses.

Version history
  • Version 1 (April 1, 1996): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts