Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Impaired actions of insulin-like growth factor 1 on protein Synthesis and degradation in skeletal muscle of rats with chronic renal failure. Evidence for a postreceptor defect.
H Ding, … , J V Vadgama, J D Kopple
H Ding, … , J V Vadgama, J D Kopple
Published February 15, 1996
Citation Information: J Clin Invest. 1996;97(4):1064-1075. https://doi.org/10.1172/JCI118499.
View: Text | PDF
Research Article

Impaired actions of insulin-like growth factor 1 on protein Synthesis and degradation in skeletal muscle of rats with chronic renal failure. Evidence for a postreceptor defect.

  • Text
  • PDF
Abstract

The actions of insulin-like growth factor 1 (IGF-1) on protein turnover and of the IGF-1 receptor (IGF-1R) were examined in skeletal muscle of rats with chronic renal failure (CRF) and sham operated (SO), pair-fed controls. Acidemia was prevented in CRF rats with NaHCO3. Serum IGF-1 and skeletal muscle IGF-1 and IGF-1 mRNA were reduced in CRF rats. Dose-response studies revealed impaired stimulation of protein synthesis and suppressed inhibition of protein degradation by IGF-1 in epitrochlearis muscle of CRF rats. Neither IGF-1 analogues with low affinity to IGF binding proteins nor proteinase inhibitors obliterated the IGF-1 resistance. In CRF rats, skeletal muscle IGF-1R mRNA was increased; displacement ligand binding studies and affinity labeling of the IGF-1R alpha subunit indicated increased total skeletal muscle IGF-1R number with normal affinity. However, both autophosphorylation of the IGF-1R beta subunit (i.e., IGF-1R tyrosine kinase) and the IGF-1R tyrosine kinase activity towards exogenous insulin receptor substrate-1, a natural substrate for IGF-1R tyrosine kinase, were reduced in CRF fats. These data indicate that in skeletal muscle of CRF rats there is resistance to the IGF-1 effects on protein synthesis and degradation and decreased IGF-1 and IGF-1 mRNA levels; IGF-1R mRNA and number are increased; but activity of IGF-1R tyrosine kinase is impaired. This postreceptor defect may be a cause of the skeletal muscle resistance to IGF-1 in CRF.

Authors

H Ding, X L Gao, R Hirschberg, J V Vadgama, J D Kopple

×

Usage data is cumulative from July 2024 through July 2025.

Usage JCI PMC
Text version 180 25
PDF 60 11
Citation downloads 69 0
Totals 309 36
Total Views 345
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts