Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

The roles of insulin and glucagon in the regulation of hepatic glycogen synthesis and turnover in humans.
M Roden, … , D L Rothman, G I Shulman
M Roden, … , D L Rothman, G I Shulman
Published February 1, 1996
Citation Information: J Clin Invest. 1996;97(3):642-648. https://doi.org/10.1172/JCI118460.
View: Text | PDF
Research Article

The roles of insulin and glucagon in the regulation of hepatic glycogen synthesis and turnover in humans.

  • Text
  • PDF
Abstract

To determine the respective roles of insulin and glucagon for hepatic glycogen synthesis and turnover, hyperglycemic clamps were performed with somatostatin [0.1 micrograms/(kg.min)] in healthy young men under conditions of: (I) basal fasting) portal vein insulinemia-hypoglucagonemia, (II) basal portal vein insulinemia-basal glucagonemia, and (III) basal peripheral insulinemia-hypoglucagonemia. Synthetic rates, pathway (direct versus indirect) contributions, and percent turnover of hepatic glycogen were assessed by in vivo 13C nuclear magnetic resonance spectroscopy during [1-13C]glucose infusion followed by a natural abundance glucose chase in conjunction with acetaminophen to noninvasively sample the hepatic UDP-glucose pool. In the presence of hyperglycemia (10.4 +/- 0.1 mM) and basal portal vein insulinemia (192 +/- 6 pM), suppression of glucagon secretion (plasma glucagon, I:31 +/- 4, II: 63 +/- 8 pg/ml) doubled the hepatic accumulation of glycogen (Vsyn) compared with conditions of basal glucagonemia [I: 0.40 +/- 0.06, II: 0.19 +/- 0.03 mumol/(liter.min): P < 0.0025]. Glycogen turnover was markedly reduced (I: 19 +/- 7%, II: 69 +/- 12%; P < 0.005), so that net rate of glycogen synthesis increased approximately fivefold (P < 0.001) by inhibition of glucagon secretion. The relative contribution of gluconeogenesis (indirect pathway) to glycogen synthesis was lower during hypoglucagonemia (42 +/- 6%) than during basal glucagonemia (54 +/- 5%; P < 0.005). Under conditions of basal peripheral insulinemia (54 +/- 2 pM) and hypoglucagonemia (III) there was negligible hepatic glycogen synthesis and turnover. In conclusion, small changes in portal vein concentrations of insulin and glucagon independently affect hepatic glycogen synthesis and turnover. Inhibition of glucagon secretion under conditions of hyperglycemia and basal concentrations of insulin results in: (a) twofold increase in rate of hepatic glycogen synthesis, (b) reduction of glycogen turnover by approximately 73%, and (c) augmented percent contribution of the direct pathway to glycogen synthesis compared with conditions of basal glucagonemia.

Authors

M Roden, G Perseghin, K F Petersen, J H Hwang, G W Cline, K Gerow, D L Rothman, G I Shulman

×

Usage data is cumulative from July 2024 through July 2025.

Usage JCI PMC
Text version 461 127
PDF 81 34
Citation downloads 61 0
Totals 603 161
Total Views 764
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts